[an error occurred while processing this directive] 世界地质 2018, 37(4) 1301-1308 DOI:   10.3969/j.issn.1004-5589.2018.04.032  ISSN: 1004-5589 CN: 22-1111/P

本期目录 | 下期目录 | 过刊浏览 | 高级检索                                                            [打印本页]   [关闭]
土壤·环境
扩展功能
本文信息
Supporting info
PDF(495KB)
[HTML全文]
参考文献[PDF]
参考文献
服务与反馈
把本文推荐给朋友
加入我的书架
加入引用管理器
引用本文
Email Alert
文章反馈
浏览反馈信息
本文关键词相关文章
生态地球化学
重金属
生物有效性
作物元素积累
本文作者相关文章
孙淳浩
余丹
王冬艳
李文博
PubMed
Article by Sun C
Article by Yu D
Article by Wang D
Article by Li W
吉林中部黑土区重金属元素生态地球化学特征
孙淳浩, 余丹, 王冬艳, 李文博
吉林大学地球科学学院, 长春 130061
摘要: 基于吉林省中部黑土区地球化学调查数据,分析统计As、Cd、Cr、Cu、Ni、Zn 6种可造成重金属污染的元素在土壤-作物系统中的生态地球化学特征。通过吉林省部分地区土壤样品与玉米籽实样品采样,采用元素有效系数与元素累积系数的方法,计算出采样点的土壤重金属元素全量、有效量和玉米籽实含量特征,从而研究重金属元素生态地球化学特征。结果表明:①研究区土壤重金属元素全量虽然较吉林省土壤元素背景值增加明显,但土壤与玉米籽实均未达到污染状态。②重金属元素有效系数均值由小到大依次为As < Cr < Zn < Cu < Ni < Cd,在研究区的空间分布差异性较大;玉米籽实积累系数均值由小到大依次为Cr < As < Ni < Cd < Cu < Zn,在的空间分布差异性相对较小。③吉林省中部黑土区的玉米籽实重金属元素积累程度均较低,在未发生土壤重金属元素污染的清洁土壤中,Cu与Zn对于玉米植株来说,属于必需营养元素范畴;重金属元素中Cd的有效系数大,作物可食部分积累程度较高,应注意其预防与治理工作;As与Cr的有效系数较小,可能是导致其在玉米籽实中积累程度较低的主要影响因素之一;Ni在土壤中有效态转化程度较高,玉米籽实Ni吸收量相对较低。④多数重金属元素在玉米籽实中的累积程度与其在土壤中的有效系数呈正相关关系。
关键词 生态地球化学   重金属   生物有效性   作物元素积累  
Ecological geochemistry characteristics of heavy metals in black soil region in central Jilin
SUN Chun-hao, YU Dan, WANG Dong-yan, LI Wen-bo
College of Earth Sciences, Jilin University, Changchun 130061, China
Abstract: Based on the geochemical survey data of the black soil region of central Jilin Province, the authors analyze the ecological geochemistry of six elements (As, Cd, Cr, Cu, Ni and Zn) that can cause heavy metal pollution in the soil crop system. By sampling the soil and corn seeds in parts of Jilin Province, using the method of element effective coefficient and element accumulation coefficient, the total heavy metal elements, effective amount and corn grain content were calculated to understand the ecological geochemistry of heavy metals. The research results indicated that:① the soil and corn seed samples were not polluted by heavy metals, even though the total concentration of soil heavy metals evidently exceeded the background value of Jilin Province. ② The metal bioavailable factors (MBFs) of As, Cr, Zn, Cu, Ni and Cd were in an ascending order, and varied greatly in spatial distribution. Other than that, the bioaccumulation factors (BAFs) of Cr, As, Ni, Cd, Cu, Zn were in an ascending order, and the BAFs mostly varied slightly in spatial distribution. ③ It is concluded that the heavy metals were mostly slightly accumulated by the corn seeds in studied area. Furthermore, the BAFs of Cu and Zn were relatively higher than the rest, indicating that Cu and Zn remained as soil nutrients when the soil was not polluted. Among all heavy metals, the MBF of Cd is the highest, meanwhile, it is also substantially accumulated in corn seeds. Thus, pollution prevention of soil Cd should be conducted preferentially. The MBFs of As and Cr were relatively low, which may then result in the less accumulation in corn seeds. The MBF of Ni was relatively high, however, the BAF was much lower when compared to other heavy metals. ④ The majority of MBFs of heavy metals were positively associated with the corresponding BAFs.
Keywords: ecological geochemistry   heavy metals   bioavailability   crop element accumulation  
收稿日期 2018-07-05 修回日期 2018-09-20 网络版发布日期  
DOI: 10.3969/j.issn.1004-5589.2018.04.032
基金项目:

吉林省自然科学基金(20170101076JC)、中国地质调查局(DD20160104)联合资助.

通讯作者: 王冬艳(1967-),女,博士生导师,主要从事土地资源评价与规划管理、土壤地球化学研究.E-mail:wangdy@jlu.edu.cn
作者简介:
作者Email: wangdy@jlu.edu.cn

参考文献:
[1] Chen J. Rapid urbanization in China:a real challenge to soil protection and food security[J]. Catena, 2007, 69(1):1-15.
[2] Xie X, Xie H, Shu C, et al. Estimation of ecological compensation standards for fallow heavy metal-polluted farmland in China based on farmer willingness to accept[J]. Sustainability, 2017, 9(10):1859.
[3] 刘霈珈, 吴克宁, 罗明,等. 农用地土壤重金属超标评价与安全利用分区[J]. 农业工程学报, 2016, 32(23):254-262. LIU Pei-jia, WU Ke-ning, LUO Ming, et al. Evaluation of agricultural land soil heavy metal elements exceed standards and safe utilization zones[J]. Transactions of the CSAE, 2016, 32(23):254-262.
[4] Liang C, Xiao H, Hu Z, et al. Uptake, transportation, and accumulation of C 60, fullerene and heavy metal ions (Cd, Cu, and Pb) in rice plants grown in an agricultural soil[J]. Environmental Pollution, 2018, 235:330-338.
[5] Yousaf B, Amina, Liu G, et al. The importance of evaluating metal exposure and predicting human health risks in urban-periurban environments influenced by emerging industry[J]. Chemosphere, 2016, 150:79-89.
[6] Kaur R, Rani R. Spatial characterization and prioritization of heavy metal contaminated soil-water resources in peri-urban areas of national capital territory (NCT), Delhi[J]. Environmental Monitoring & Assessment, 2006, 123(1/3):233-247.
[7] Silva F B V D, Araújo P R M, Silva L H V D, et al. Assessing heavy metal sources in sugarcane Brazilian soils:an approach using multivariate analysis[J]. Environmental Monitoring & Assessment, 2016, 188(8):1-12.
[8] 陈明, 冯流, Yvon J. 缓变型地球化学灾害:概念、模型及案例研究[J].中国科学(D辑), 2005, 35(增刊1):261-266. CHEN Ming, FENG Liu, Yvon J, et al. Delayed geochemical hazards:concept, model and cases[J]. Science in China(Ser.D), 2005, 35(Suppl.1):261-266.
[9] 陈明, 冯流, 周国华,等. 缓变型地球化学灾害:特征、模型和应用[J].地质通报, 2005, 24(10):916-921. CHEN Ming, FENG Liu, ZHOU Guo-hua, et al. Delayed geochemical hazards:characteristic, modeling and its application[J]. Geological Bulletin of China, 2005, 24(10):916-921.
[10] 范昊明, 蔡强国, 陈光,等. 世界三大黑土区水土流失与防治比较分析[J].自然资源学报, 2005, 20(3):387-393. FAN Hao-ming, CAI Qiang-guo, CHEN Guang, et al. Comparative study of the soil erosion and control in the three major black soil regions in the world[J].Journal of Natural Sciences,2005, 20(3):387-393.
[11] Li W, Wang D, Li H, et al. Urbanization-induced site condition changes of peri-urban cultivated land in the black soil region of Northeast China[J]. Ecological Indicators, 2017, 80:215-223.
[12] 王士君, 王永超, 冯章献. 吉林省中部地区中心地空间关系分析[J]. 地理科学进展, 2012, 31(12):1628-1635. WANG Shi-jun, WANG Yong-chao, FENG Zhang-xian. Spatial relationships between central places in the central region of Jilin[J]. Progress in Geoscience, 2012, 31(12):1628-1635.
[13] De N F, Baldantoni D, Sessa L, et al. Distribution of heavy metals and polycyclic aromatic hydrocarbons in holm oak plant-soil system evaluated along urbanization gradients[J]. Chemosphere, 2015, 134:91-97.
[14] 孟宪玺,李生智.吉林省土壤元素背景值研究[M].北京科学出版社,1995:154-159. MENG Xian-xi, LI Sheng-zhi. Study on the soil background value in Jilin Province[M]. Beijing:Science Press, 1995:154-159.
[15] GB 15618-1995土壤环境质量标准[S].北京:中国标准出版社,1995. GB 15618-1995 Environmental quality standards for soil[S]. Beijing:China Standards Press,1995.
[16] GB 2762-2012食品中污染物限量[S].北京:中国标准出版社,2012. GB 15618-1995 Pollutant limits in food[S]. Beijing:China Standards Press,2012.
[17] 纪玉琨, 李广贺. 作物对重金属吸收能力的研究[J]. 农业环境科学学报, 2006,25(增刊1):104-108. JI Yu-kun, LI Guang-ke. Adsorption of wheat and maize on heavy metals in soils[J]. Journal of Agro-environment Science, 2006,25(Suppl.1):104-108.
[18] 段德超, 于明革, 施积炎. 植物对铅的吸收、转运、积累和解毒机制研究进展[J]. 应用生态学报, 2014, 25(1):287-296. DUAN De-chao, YU Ming-ge, SHI Ji-yan. Research advances in uptake, translocation, accumulation and detoxification of Pb in plant[J]. Chinese Journal of Applied Ecology, 2014, 25(1):287-296.
[19] 王宝奇, 李淑芹, 徐明岗. 改良剂对中国两种典型土壤铜锌有效性的影响及机理[J]. 生态环境, 2007, 16(4):1139-1143. WANG Bao-qi, LI Shu-qin, XU Ming-gang. Effects of amendments on availability of Cu and Zn in two types of soils in China[J]. Ecology and Environment, 2007, 16(4):1139-1143.
[20] Hakanson L. An ecological risk index for aquatic pollution control-a sedimentalogical approach[J]. Water Research, 1980, 14(8):975-1001.
[21] Ghasemi S, Moghaddam S S, Rahimi A, et al. Ecological risk assessment of coastal ecosystems:the case of mangrove forests in Hormozgan Province, Iran[J]. Chemosphere, 2017, 191:417-426.
[22] 姜菲菲,孙丹峰,李红,等. 北京市农业土壤重金属污染环境风险等级评价[J]. 农业工程学报,2011,27(8):330-337. JIANG Fei-fei, SUN Dan-feng, LI Hong, et al. Risk grade assessment for farmland pollution of heavy metals in Beijing[J]. Transactions of the CSAE, 2011, 27(8):330-337.
[23] 刘昭兵, 纪雄辉, 王国祥,等. 赤泥对Cd污染稻田水稻生长及吸收积累Cd的影响[J]. 农业环境科学学报, 2010, 29(4):692-697. LIU Zhao-bing, JI Xiong-hui, WANG Guo-xiang, et al. Effects of red-mud on rice growth and cadmium uptake in cadmium polluted soil[J] Journal of Agro-environment Science, 2010, 29(4):692-697.
[24] 万红友, 周生路, 赵其国等. 苏南经济快速发展区土壤Cu、Ni、Pb、Zn形态及其有效性定量分析-以昆山市为例[J]. 土壤学报, 2010, 47(4):652-658. WAN Hong-you, ZHOU Sheng-lu, ZHAO Qi-guo, et al. Chemical forms og soil Cu, Ni, Pb and Zn and quantitative analysis of their availabilities in regions rapid in economic development in south Jiangsu:a case study of Kunshan City[J]. Acta Pedologica Sinica, 2010, 47(4):652-658.
本刊中的类似文章
1.张玉峰, 陈圣波, 韩程, 张梦娇, 张斌 . 综合实测光谱与 Sentinel??2 影像的农田土壤重金属含量 时空变化研究: 以辽宁苏子河流域为例 [J]. 世界地质, 2023,42(3): 568-576
2. 杨婧婕, 尚永正,杨健,张凤君, 施春雨,李晨阳,钟爽. 磁性生物炭基Bi2 WO6光催化 去除水中四环素和Cr(VI)的性能与机制[J]. 世界地质, 2023,42(2): 377-389
3.李彤,陆继龙,来雅文,赵威,汤肖丹,蓝天.吉林市苇沙河水中重金属元素地球化学特征与风险评价[J]. 世界地质, 2022,41(2): 402-410
4.禹惠敏,王冬艳,王兴佳,商屹.东北水稻产区土壤-作物系统锌元素生态地球化学特征[J]. 世界地质, 2022,41(1): 217-226
5.韩继博,张晟蠫,周昊,田宇,冯立民.中国北方某湖泊底泥污染分析及重金属潜在生态风险评价[J]. 世界地质, 2022,41(1): 227-235
6.张妍,李玉嵩. 河南省永城市表层土壤重金属地球化学基线值厘定
及其累积特征
[J]. 世界地质, 2021,40(3): 728-737
7.王天欣,陆继龙,赵威,刘洋,李彤,来雅文.长春市建成区土壤重金属污染与生态风险评价[J]. 世界地质, 2021,40(2): 467-474
8.郝立波, 田密, 赵新运, 王通, 李宏姣, 万洪祥.利用黏土矿物计算背景值评估沉积物重金属污染[J]. 世界地质, 2016,35(2): 586-592
9.禹永乐, 刘兆瑛, 马哲, 徐茁, 杜娟娟.吉林市某冶炼厂土壤重金属污染风险评价[J]. 世界地质, 2014,33(3): 716-722
10.杨潇瀛, 张力文, 张凤君, 马哲, 李龙辉.土壤重金属污染潜在风险评价[J]. 世界地质, 2011,30(1): 103-109
11.孙超, 李月芬, 王冬艳, 董会和, 何洪君.铁矿区复垦土壤重金属含量变化趋势及其污染评价[J]. 世界地质, 2010,29(4): 569-613

Copyright by 世界地质