[an error occurred while processing this directive] Global Geology 2024, 27(4) 196-206 DOI:     ISSN: 1673-9736 CN: 22-1371/P

本期目录 | 下期目录 | 过刊浏览 | 高级检索                                                            [打印本页]   [关闭]
论文
扩展功能
本文信息
Supporting info
PDF(547KB)
[HTML全文]
参考文献[PDF]
参考文献
服务与反馈
把本文推荐给朋友
加入我的书架
加入引用管理器
引用本文
Email Alert
文章反馈
浏览反馈信息
本文关键词相关文章
 
本文作者相关文章
PubMed
Article by Li S
Article by Shen YAQY
 
 
 
摘要:  
关键词    
 Research on rock hand specimen naming method based on deep learning and Inception-v3 model 
 
 LI SiJia 1,2 , SHEN YanJie 1* and QIAN Ye 1,2,3 
 
 1.College of Earth Sciences, Jilin University, Changchun 130061, China 
2.Shandong Provincial Engineering Laboratory of Application and Development for Big Data of Deep Gold Exploration, Weihai 264209, Shandong, China 
3.Key Laboratory of Mineral Resources Evaluation in Northeast Asia, Ministry of Nature Resources, Changchun 130061, China 
 
Abstract:   The naming of rock hand specimens is usually conducted by geological workers based on observed mineral composition, texture characteristics, etc., combined with their own knowledge reserves. The accuracy of identiffcation results is limited by the experience, research interests, and identiffcation level of the identiffer, as well as the complexity of the rock composition. To improve the efffciency of rock hand specimen identification, this paper proposes a method for rock image recognition and classification based on deep learning and the Inception-v3 model. It encompasses the preprocessing of collected photographs of typical intrusive rock hand specimens, along with augmenting the sample size through data augmentation methods, culminating in a comprehensive dataset comprising 12501 samples. Experimental results show that the model has good learning ability when there is sufffcient data. Through iterative training of the Inception-v3 model on the rock dataset, the accuracy of rock image recognition reaches 92.83%, with a loss of only 0.2156. Currently, several common types of intrusive rocks can be identified: gabbro, granite, diorite, peridotite, granodiorite, diabase, and granite porphyry. Software is developed for open use by geological workers to improve work efffciency. 
 
Keywords:
Inception-v3   Keras   deep learning   image identiffcation   naming of the intrusive rocks specimen
   
收稿日期  修回日期  网络版发布日期  
DOI:
基金项目:

 

通讯作者:
作者简介:
作者Email:

参考文献:
 
本刊中的类似文章
1.. [J]. Global Geology, 2024,27(4): 207-215
2.. [J]. Global Geology, 2024,27(4): 177-195
3.. [J]. Global Geology, 2024,27(4): 216-232
4.. [J]. Global Geology, 2024,27(3): 121-131
5.. [J]. Global Geology, 2024,27(3): 132-144
6.. [J]. Global Geology, 2024,27(3): 167-176
7.. [J]. Global Geology, 2024,27(3): 154-166
8.. [J]. Global Geology, 2024,27(3): 145-153
9.. [J]. Global Geology, 2024,27(2): 63-75
10.. [J]. Global Geology, 2024,27(2): 93-104
11.. [J]. Global Geology, 2024,27(2): 76-92
12.. [J]. Global Geology, 2024,27(2): 105-120
13..[J]. Global Geology, 2024,27(1): 1-19
14.. [J]. Global Geology, 2024,27(1): 20-34
15.. [J]. Global Geology, 2024,27(1): 35-42

Copyright by Global Geology