[an error occurred while processing this directive] Global Geology 2024, 27(1) 43-55 DOI:     ISSN: 1673-9736 CN: 22-1371/P

本期目录 | 下期目录 | 过刊浏览 | 高级检索                                                            [打印本页]   [关闭]
论文
扩展功能
本文信息
Supporting info
PDF(2217KB)
[HTML全文]
参考文献[PDF]
参考文献
服务与反馈
把本文推荐给朋友
加入我的书架
加入引用管理器
引用本文
Email Alert
文章反馈
浏览反馈信息
本文关键词相关文章
 
本文作者相关文章
PubMed
Article by Wang WAWT
 
 
 
摘要:  
关键词    
 Acoustic emission signal identi?cation of di?erent rocks based on SE-1DCNN-BLSTM network model 
 WANG Weihua 1* and WANG Tingting 1,2 
 1. School of Electrical Engineering & Information, Northeast Petroleum University, Daqing 163318 , Heilongjiang, China; 
2. Key Laboratory of Networking and Intelligent Control of Heilongjiang Province, Daqing 163318, Heilongjiang, China 
Abstract:  In order to study fracture mechanism of rocks in di?erent brittle mineral contents, this study proposes a method to identify the acoustic emission signal released by rock fracture under di?erent brittle mineral content (BMC), and then determine the content of brittle matter in rock. To understand related interference such as the noises in the acoustic emission signals released by the rock mass rupture, a 1DCNN-BLSTM network model with SE module is constructed in this study. The signal data is processed through the 1DCNN and BLSTM networks to fully extract the time-series correlation features of the signals, the non-correlated features of the local space and the weak periodicity law. Furthermore, the processed signals data is input into the fully connected layers. Finally, softmax function is used to accurately identify the acoustic emission signals released by different rocks, and then determine the content of brittle minerals contained in rocks. Through experimental comparison and analysis, 1DCNN-BLSTM model embedded with SE module has good anti-noise performance, and the recognition accuracy can reach more than 90 percent, which is better than the traditional deep network models and provides a new way of thinking for rock acoustic emission research. 
Keywords:  brittleness   acoustic emission signal   1DCNN   BLSTM   SENet
 
  
收稿日期  修回日期  网络版发布日期  
DOI:
基金项目:

 

通讯作者:
作者简介:
作者Email:

参考文献:
 
本刊中的类似文章
1.. [J]. Global Geology, 2024,27(1): 35-42
2.. [J]. Global Geology, 2024,27(1): 56-62
3..[J]. Global Geology, 2024,27(1): 1-19
4.. [J]. Global Geology, 2024,27(1): 20-34
5.. [J]. Global Geology, 2023,26(4): 211-221
6.. [J]. Global Geology, 2023,26(4): 264-272
7.. [J]. Global Geology, 2023,26(4): 237-250
8.. [J]. Global Geology, 2023,26(4): 199-210
9.. [J]. Global Geology, 2023,26(4): 222-236
10.. [J]. Global Geology, 2023,26(4): 251-263
11.. [J]. Global Geology, 2023,26(3): 146-156
12.. [J]. Global Geology, 2023,26(3): 133-145
13.. [J]. Global Geology, 2023,26(3): 189-198
14.. [J]. Global Geology, 2023,26(3): 157-166
15.. [J]. Global Geology, 2023,26(3): 177-188

Copyright by Global Geology