[an error occurred while processing this directive] Global Geology 2024, 27(3) 145-153 DOI:     ISSN: 1673-9736 CN: 22-1371/P

本期目录 | 下期目录 | 过刊浏览 | 高级检索                                                            [打印本页]   [关闭]
论文
扩展功能
本文信息
Supporting info
PDF(418KB)
[HTML全文]
参考文献[PDF]
参考文献
服务与反馈
把本文推荐给朋友
加入我的书架
加入引用管理器
引用本文
Email Alert
文章反馈
浏览反馈信息
本文关键词相关文章
 
本文作者相关文章
PubMed
Article by Du M
Article by Mao W
Article by Yang MAZJ
 
 
 
摘要:  
关键词    
 Migration images guided high-resolution velocity modeling based on fully convolutional neural network 
 DU Meng 1,2 , MAO Weijian 1* , YANG Maoxin 3 and ZHAO Jianzhi 3 
 1. Research Center for Computational and Exploration Geophysics, State Key Laboratory of Geodesy and Earth’s Dynamics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China; 
2. College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 
3. Daqing Geophysical Research Institute BGP CNPC, Daqing 163712, Heilongjiang, China 
Abstract:  Current data-driven deep learning (DL) methods typically reconstruct subsurface velocity models directly from pre-stack seismic records. However, these purely data-driven methods are often less robust and produce results that are less physically interpretative. Here, the authors propose a new method that uses migration images as input, combined with convolutional neural networks to construct high-resolution velocity models. Compared to directly using pre-stack seismic records as input, the nonlinearity between migration images and velocity models is signiffcantly reduced. Additionally, the advantage of using migration images lies in its ability to more comprehensively capture the reffective properties of the subsurface medium, including amplitude and phase information, thereby to provide richer physical information in guiding the reconstruction of the velocity model. This approach not only improves the accuracy and resolution of the reconstructed velocity models, but also enhances the physical interpretability and robustness. Numerical experiments on synthetic data show that the proposed method has superior reconstruction performance and strong generalization capability when dealing with complex geological structures, and shows great potential in providing efffcient solutions for the task of reconstructing high-wavenumber components. 
 
Keywords:  deep learning   seismic inversion   migration imaging   velocity modeling
 
  
收稿日期  修回日期  网络版发布日期  
DOI:
基金项目:

 

通讯作者:
作者简介:
作者Email:

参考文献:
 
本刊中的类似文章
1.. [J]. Global Geology, 2024,27(4): 207-215
2.. [J]. Global Geology, 2024,27(4): 177-195
3.. [J]. Global Geology, 2024,27(4): 196-206
4.. [J]. Global Geology, 2024,27(4): 216-232
5.. [J]. Global Geology, 2024,27(3): 154-166
6.. [J]. Global Geology, 2024,27(3): 132-144
7.. [J]. Global Geology, 2024,27(3): 167-176
8.. [J]. Global Geology, 2024,27(3): 121-131
9.. [J]. Global Geology, 2024,27(2): 105-120
10.. [J]. Global Geology, 2024,27(2): 63-75
11.. [J]. Global Geology, 2024,27(2): 93-104
12.. [J]. Global Geology, 2024,27(2): 76-92
13.. [J]. Global Geology, 2024,27(1): 35-42
14.. [J]. Global Geology, 2024,27(1): 56-62
15.. [J]. Global Geology, 2024,27(1): 43-55

Copyright by Global Geology