[an error occurred while processing this directive] 世界地质 2020, 39(1) 167-175,184 DOI:   10.3969/j.issn.1004-5589.2020.01.017  ISSN: 1004-5589 CN: 22-1111/P

本期目录 | 下期目录 | 过刊浏览 | 高级检索                                                            [打印本页]   [关闭]
地球物理
扩展功能
本文信息
Supporting info
PDF(4463KB)
[HTML全文]
参考文献[PDF]
参考文献
服务与反馈
把本文推荐给朋友
加入我的书架
加入引用管理器
引用本文
Email Alert
文章反馈
浏览反馈信息
本文关键词相关文章
音频大地电磁
三维反演
河津
铁矿
非线性共轭梯度法
本文作者相关文章
邹宗霖
翁爱华
周子琨
连鑫葆
郭俊豪
PubMed
Article by Zou Z
Article by Weng A
Article by Zhou Z
Article by Lian X
Article by Guo J
非线性共轭梯度三维反演在山西河津铁矿音频大地电磁数据勘察中的应用
邹宗霖, 翁爱华, 周子琨, 连鑫葆, 郭俊豪
吉林大学地球探测科学与技术学院, 长春 130026
摘要: 利用非线性共轭梯度反演方法,对采集到的近正交的两条音频大地电磁剖面数据构成的主阻抗数据集进行三维反演。结果显示,山西省河津市地下结构呈现较明显的三层构造特征,推测第一层高阻异常是侵入岩或变质片麻岩,第二层低阻异常是铁矿富存区,高阻的第三层异常反映研究区的花岗闪长岩基底。根据地球物理电性参数资料,铁矿体为低阻,电阻率<10 Ω·m。因此,推测10 Ω·m的电阻率等值面大致勾勒出大地电磁反演结果推测的铁矿的成矿有利区。在两条剖面正交位置下方,矿体规模较小;但在2号线60-100号点和3号线476-492号点的下方1 km深的位置附近发现了新矿体。结果表明,利用大地电磁法寻找类似热液型铁矿这类局部异常体,三维反演是获得可靠结果的必要技术手段;即使是剖面性观测数据,也可以进行三维反演,并取得良好效果。
关键词 音频大地电磁   三维反演   河津   铁矿   非线性共轭梯度法  
Application of NLCG 3D inversion of AMT data exploration in Hejin iron deposit, Shanxi
ZOU Zong-lin, WENG Ai-hua, ZHOU Zi-kun, LIAN Xin-bao, GUO Jun-hao
College of Geo-exploration Science and Technology, Jilin University, Changchun 130026, China
Abstract: Nonlinear conjugate gradient(NLCG) inversion method is used to conduct three-dimensional inversion of the impedance data set composed of two nearly orthogonal audio magnetotelluric profiles. The results show that the subsurface structure in Hejin of Shanxi presents an obvious three-layer structure. It is speculated that the first layer of high resistivity is intrusive rock or metamorphic gneiss, whereas the second layer of low resistivity is enriched with iron deposit, and the third layer of high resistivity represents the granodiorite basement of the study area. According to the geophysical electrical parameters, the ore body of iron deposit is of low resistivity less than 10 Ω·m. Therefore, the resistivity iso-surface of 10 Ω·m roughly outlines the favorable area of iron deposit predicted by magnetotelluric inversion. Under the intersecting position of two sections, the size of ore body is small, however, new ore bodies have been found at the depth of approximately 1 km below the points 60-100 of line 2 and points 476-492 of line 3. The results show that in searching for local anomalies related to hydrothermal iron deposit using magnetotelluric method, three-dimensional inversion is necessary to obtain reliable results. Three-dimensional inversion can applied even to sectional observation data to obtain good results.
Keywords: AMT   3D inversion   Hejin   iron deposit   NLCG  
收稿日期 2019-09-23 修回日期 2019-11-13 网络版发布日期  
DOI: 10.3969/j.issn.1004-5589.2020.01.017
基金项目:

国家重大科研仪器专项(2011YQ05006010)

通讯作者: 翁爱华(1968),男,教授,博士生导师,主要从事电磁法正反演理论的研究。E-mail:wengah@jlu.edu.cn
作者简介:
作者Email: wengah@jlu.edu.cn

参考文献:
[1] 王建其,刘祥,第五春荣.晋陕交界涑水杂岩LA-ICP-MS锆石U-Pb年龄和Hf同位素组成及其地质意义[J].地质通报,2017,36(2/3):392-401. WANG Jian-qi,LIU Xiang,DIWU Chun-rong.LA-ICP-MS zircon U-Pb dating and Hf isotopic compositions of rocks from the Sushui complex in Shanxi-Shaanxi border area and their geological significance[J].Geological Bulletin of China,2017,36(2/3):392-401.
[2] 赵一鸣.中国主要富铁矿床类型及地质特征[J].矿床地质,2013,32(4):686-705. ZHAO Yi-ming.Main genetic types and geological characteristics of iron-rich ore deposits in China[J].Mineral Deposits,2013,32(4):686-705.
[3] 孙晓东,曾昭发,王学刚,等.伊通盆地西北缘断裂乐山南段电磁异常特征与地质单元[J].世界地质,2018,37(1):250-258. SUN Xiao-dong,ZENG Zhao-fa,WANG Xue-gang,et al.Electromagetic anomalies and geological units in southern Leshan segment of the northwestern margin of Yitong Basin[J]. Global Geology,2018,37(1):250-258.
[4] 夏广沛,翁爱华,李建平,等.音频大地电磁数据非线性共轭梯度3D反演在江西相山铀矿勘查中的应用[J].世界地质,2019,38(1):247-255,292. XIA Guang-pei,WENG Ai-hua,LI Jian-ping,et al.Application of 3D NLCG inversion of AMT data in uranium exploration at Xiangshan,Jiangxi[J].Global Geology,2019,38(1):247-255,292.
[5] 侯海丽.电法勘探方法在水文和工程地质中的应用[J].内蒙古煤炭经济,2018(9):53,89. HOU Hai-li.Application of electrical prospecting method in hydrology and engineering geology[J].Inner Mongolia Coal Economy,2018(9):53,89.
[6] 米晓利,江汶波,李伟丽,等.高频电磁法在鄂尔多斯盆地伊盟隆起区砂岩型铀矿勘探中的应用[J].地质与勘探,2017,53(3):541-546. MI Xiao-li,JIANG Wen-bo,LI Wei-li,et al.Application of the electromagnetic method in the exploration of sandstone-type uranium deposits in Yimeng uplift area of the Ordos Basin[J].Geology and Exploration,2017,53(3):541-546.
[7] 郭春玲,陈小斌.大地电磁资料精细处理和二维反演解释技术研究六-交错模型的大地电磁二维反演[J].地球物理学报,2018,61(6):2548-2559. GUO Chun-ling,CHEN Xiao-bin.Refined processing and two-dimensional inversion of magnetotelluric (MT) data (VI):two-dimensional magnetotelluric inversion based on the staggered model[J].Chinese Journal of Geophysics,2018,61(6):2548-2559.
[8] 高鑫.音频大地电磁法极化特征在某隧道工程地质特征分析中的应用[J].工程地球物理学报,2018,15(5):625-630. GAO Xin.Application of polarization characteristics of audio magnetotelluric method to analysis of engineering geological features of a tunnel[J].Chinese Journal of Engineering Geophysics,2018,15(5):625-630.
[9] 胡祖志,胡祥云,何展翔.三维大地电磁数据的二维反演解释[J].石油地球物理勘探,2005,40(3):353-359. HU Zu-zhi,HU Xiang-yun,HE Zhan-xiang.Using 2-D inversion for interpretation of 3-D MT data[J].Oil Geophysical Prospecting,2005,40(3):353-359.
[10] 魏文博.我国大地电磁测深新进展及瞻望[J].地球物理学进展,2002,17(2):245-254. WEI Wen-bo.New advance and prospect of magnetotelluric sounding (MT) in China[J].Progress in Geophysics,2002,17(2):245-254.
[11] 林昌洪,谭捍东,佟拓.利用大地电磁三维反演方法获得二维剖面附近三维电阻率结构的可行性[J].地球物理学报,2011,54(1):245-256. LIN Chang-hong,TAN Han-dong,TONG Tuo.The possibility of obtaining nearby 3D resistivity structure from magnetotelluric 2D profile data using 3D inversion[J].Chinese Journal of Geophysics,2011,54(1):245-256.
[12] 邓琰,汤吉.大地电磁测深方法数据处理进展[J].地球物理学进展,2019,34(4):1411-1422. DENG Yan,TANG Ji.Advances in magnetotelluric data processing[J].Progress in Geophysics,2019,34(4):1411-1422.
[13] 陈明生.关于频率电磁测深几个问题的探讨(一):从可控源音频大地电磁测深原理看解释中的问题[J].煤田地质与勘探,2012,40(5):63-66. CHEN Ming-sheng.Problem of date interpretation from the view of principle of controlled-source audio-frequency magnetitellurics[J].Coal Geology & Exploration,2012,40(5):63-66.
[14] 孙希莹,莫子奋.音频大地电磁测深和激电测深综合性找矿应用研究[J].世界有色金属,2017(24):97-98. SUN Xi-ying,MO Zi-fen.Study on the application of audio frequency magnetotelluric sounding and isoelectric sounding for comprehensive ore prospecting[J].World Nonferrous Metals,2017(24):97-98.
[15] 柳建新,赵然,郭振威.电磁法在金属矿勘查中的研究进展[J].地球物理学进展,2019,34(1):151-160. LIU Jian-xin,ZHAO Ran,GUO Zhen-wei.Research progress of electromagnetic methods in the exploration of metal deposits[J].Progress in Geophysics,2019,34(1):151-160.
[16] 席振铢,冯万杰,李瑞雪,等.低阻覆盖层对高频大地电磁测深的影响[J].地质与勘探,2011,47(4):673-678. XI Zhen-zhu,FENG Wan-jie,LI Rui-xue,et al.Effect of a low-resistivity cover on high-frequency magnetotelluric sounding[J].Geology and Prospecting,2011,47(4):673-678.
[17] 殷康金.基于EH4高频大地电磁测深数据的时频分析[J].世界有色金属,2018(9):294-295. YIN Kang-jin.Time frequency analysis of high frequency magnetotelluric sounding data based on EH4[J].World Nonferrous Metals,2018(9):294-295.
[18] Gamble T D,Goubau W M,Clarke J.Magnetotellurics with a remote magnetic reference[J].Geophysics,1979,44(1):53-68.
[19] 徐志敏,辛会翠,谭新平,等.强电磁干扰区大地电磁远参考技术试验效果分析[J].物探与化探,2018,42(3):560-568. XU Zhi-min,XIN Hui-cui,TAN Xin-ping,et al.An analysis of the experimental result of MT remote reference technique in strong electromagnetic interference region[J].Geophysical and Geochemical Exploration,2018,42(3):560-568.
[20] Yang Y,Wang X Q,Han J T,et al.Magnetotelluric transfer function distortion assessment using Nyquist diagrams[J].Journal of Applied Geophysics,2018,160:218-228.
[21] 林昌洪,谭捍东,佟拓.大地电磁面积性资料和稀疏测线资料的三维反演解释[J].现代地质,2012,26(6):1185-1192. LIN Chang-hong,TAN Han-dong,TONG Tuo.3D interpretation of magnetotelluric sparse survey lines data and dense 3D grid data[J].Geoscience,2012,26(6):1185-1192.
[22] 赵维俊,孙中任.大地电磁阻抗张量旋转方法和曲线圆滑方法的比较[J].物探与化探,2013,37(6):1125-1132. ZHAO Wei-jun,SUN Zhong-ren.A comparative study of magnetotelluric impedance tensor rotation and curve smoothing methods[J].Geophysical and Geochemical Exploration,2013,37(6):1125-1132.
[23] 马涛.大地电磁法数据模式识别与阻抗旋转在铁路地质勘察中应用[J].铁道勘察,2017,43(5):90-93. MA Tao.Application of AMT data mode recognition and impedance rotation in railway geological survey[J].Railway Investigation and Surveying,2017,43(5):90-93.
[24] 胡祖志,胡祥云,何展翔.大地电磁非线性共轭梯度拟三维反演[J].地球物理学报,2006,49(4):1226-1234. HU Zu-zhi,HU Xiang-yun,HE Zhan-xiang.Pseudo-three-dimensional magnetotelluric inversion using nonlinear conjugate gradients[J].Chinese Journal of Geophysics,2006,49(4):1226-1234.
[25] 周汝峰,王绪本,秦策,等.大地电磁NLCG与OCCAM二维反演的综合利用[J].地球物理学进展,2016,31(5):2306-2312. ZHOU Ru-feng,WANG Xu-ben,QIN Ce,et al.Comprehensive utilization of NLCG and OCCAM in two-dimensional magnetotelluric inversion[J].Progress in Geophysics,2016,31(5):2306-2312.
[26]邓唯淅,肖宏跃,甯艳,等.常用多金属矿CSAMT反演方法研究与对比[J].世界有色金属,2018(18):210-211. DENG Wei-xi,XIAO Hong-yue,NING Yan,et al.Research and comparison of CSAMT inversion methods for commonly used polymetallic ore deposits[J].World Nonferrous Metals,2018(18):210-211.
[27]Wannamaker P E,Hohmann G W,Ward S H.Magnetotelluric responses of three-dimensional bodies in layered earths[J].Geophysics,1984,49(9):1517-1533.
[28]仇根根,吕琴音,彭炎,等.大地电磁三维模型二维反演计算数值模拟分析[J].物探与化探,2018,42(4):791-797. QIU Gen-gen,LYU Qin-yin,PENG Yan,et al. An analysis for MT 2D inversion to explain three-dimensional model[J]. Geophysical and Geochemical Exploration,2018,42(4):791-797.
[29]Ledo J.2-D versus 3-D magnetotelluric data interpretation[J].Surveys in Geophysics,2005,26(5):511-543.
[30]戴前伟,肖波,冯德山,等.基于二维高密度电阻率勘探数据的三维反演及应用[J].中南大学学报(自然科学版),2012,43(1):293-300. DAI Qian-wei,XIAO Bo,FENG De-shan,et al.3-D inversion of high density resistivity method based on 2-D exploration data and its application[J].Journal of Central South University(Science and Technology),2012,43(1):293-300.
[31]康敏,胡祥云,康健,等.大地电磁二维反演方法分析对比[J].地球物理学进展,2017,32(2):476-486. KANG Min,HU Xiang-yun,KANG Jian, et al.Compared of magnetotelluric 2D inversion methods[J].Progress in Geophysics,2017,32(2):476-486.
[32]蔡军涛,陈小斌.大地电磁资料精细处理和二维反演解释技术研究(二)-反演数据极化模式选择[J].地球物理学报,2010,53(11):2703-2714. CAI Jun-tao,CHEN Xiao-bin.Refined techniques for data processing and two-dimensional inversion in magnetotelluric II:which data polarization mode should be used in 2D inversion[J]. Chinese Journal of Geophysics,2010,53(11):2703-2714.
[33]赵斌.大中条地区火山-岩浆-成矿作用及成矿预测:博士学位论文[D].西安:长安大学,2013. ZHAO Bin.Volcano-magma-mineralization processing and metallogenic prediction of Dazhongtiao area:doctor's degree thesis[D].Xi'an:Chang'an University,2013.
本刊中的类似文章
1.李少朋, 李桐林, 郑军, 陈汉波, 张忠禹.重磁电三维反演在下嘎来奥伊河上游矿区中的应用[J]. 世界地质, 2020,39(2): 437-443
2.翟富荣, 梁帅, 杨新宇, 张婧一, 张广阳, 魏明辉, 苗彤, 谭亮.加拿大拉布拉多铁矿类型与勘查模型[J]. 世界地质, 2019,38(3): 731-736
3.夏广沛, 翁爱华, 李建平, 李世文, 杨悦, 胡英才.音频大地电磁数据非线性共轭梯度3D反演在江西相山铀矿勘查中的应用[J]. 世界地质, 2019,38(1): 247-256,292
4.周中彪, 裴福萍, 王志伟, 曹花花, 路思明, 许文良, 周皓.吉林中部伊通地区放牛沟火山岩的形成时代及其地质意义[J]. 世界地质, 2018,37(1): 46-55
5.江志强, 王建飞.航磁梯度数据解释新方法在迁安铁矿勘探中的应用[J]. 世界地质, 2017,36(3): 947-953,963
6.赖科, 任云生, 郝宇杰, 孙琦, 刘军, 李俊英.黑龙江佳木斯地区羊鼻山BIF型铁矿床的形成时代及地质意义[J]. 世界地质, 2017,36(2): 495-506
7.王予, 薛林福, 彭冲, 马燕妮.鞍山—本溪地区太古宙结晶基底埋深[J]. 世界地质, 2016,35(2): 387-394
8.胡孝清, 郗爱华, 向雷, 谢官志, 肖嗣禹, 孙鸿儒, 石桂鹏.四川攀枝花含矿辉长岩地球化学及成矿意义[J]. 世界地质, 2016,35(2): 395-402
9.周静, 李本仙, 梁一鸿, 于泓超, 孙晓.吉林东部塔东铁矿区雁脖岭岩体和朱敦店岩体的形成时代与构造背景分析[J]. 世界地质, 2016,35(1): 142-152
10.张淼, 王可勇, 赵立国, 尹桂堂, 王承洋, 于琪.山东七宝山金铜多金属矿区黄铁矿微量元素特征及其地质意义[J]. 世界地质, 2015,34(3): 656-663
11.史鹏会, 杨言辰, 叶松青, 韩世炯.黑龙江五道岭钼铁矿床地质地球化学特征及成因[J]. 世界地质, 2012,31(2): 262-270
12.陈立铭, 郭丽华.中国铁矿石定价权策略博弈[J]. 世界地质, 2011,30(1): 110-115
13.赵华雷, 郗爱华, 刘俊梅, 王守仁, 龚鹏辉.内蒙古西乌珠穆沁旗阿拉坦高勒钒钛磁铁矿矿床地质特征[J]. 世界地质, 2011,30(1): 39-45
14.孙超, 李月芬, 王冬艳, 董会和, 何洪君.铁矿区复垦土壤重金属含量变化趋势及其污染评价[J]. 世界地质, 2010,29(4): 569-613
15.李健, 贾大成, 白雪山, 李永占, 裴尧, 宋运红.河北张百湾中生代盖层下隐伏磁铁石英岩型铁矿床的勘查条件[J]. 世界地质, 2009,28(2): 187-192

Copyright by 世界地质