[an error occurred while processing this directive] 世界地质 2020, 39(1) 45-55 DOI:   10.3969/j.issn.1004-5589.2020.01.004  ISSN: 1004-5589 CN: 22-1111/P

本期目录 | 下期目录 | 过刊浏览 | 高级检索                                                            [打印本页]   [关闭]
基础地质
扩展功能
本文信息
Supporting info
PDF(2483KB)
[HTML全文]
参考文献[PDF]
参考文献
服务与反馈
把本文推荐给朋友
加入我的书架
加入引用管理器
引用本文
Email Alert
文章反馈
浏览反馈信息
本文关键词相关文章
沉积环境
沉积流体
沉积机制
牵引流
重力流
本文作者相关文章
李向东
PubMed
Article by Li X
浅议沉积学中的流体问题
李向东
昆明理工大学国土资源工程学院, 昆明 650093
摘要: 笔者从流体的角度,对近年来有关流体沉积问题的研究成果进行整理、总结、归纳和诠释。从沉积学的角度总体上可将流体分为牵引流、过渡流和重力流3大类:其中牵引流是研究的基础,可进一步分为单向流、双向流和振荡流3种基本类型以及叠置流、复合流和叠加流3种复合类型,可按照流体力学的相关方法展开研究;过渡流和重力流沉积研究的关键在于各种重力流类型之间(浊流、液化沉积物流、颗粒流和碎屑流)及其和牵引流之间的相互转化。流体的沉积机制可分为垂直降落沉积(静水)、底床阻碍沉积(牵引流)和能量减弱沉积(重力流)3大类,各种流体的交互作用最终可形成丘状(洼状)交错层理的水动力条件。通过综述可以发现,从流体角度进行沉积学研究尽管困难,但仍然可行,特别是对于复杂水动力条件下的沉积学研究具有一定的意义。
关键词 沉积环境   沉积流体   沉积机制   牵引流   重力流  
An overview of hydromechanics in sedimentology
LI Xiang-dong
College of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China
Abstract: The reported and published research works on fluid deposition in recent years have been reviewed, summarized, concluded and explained in this article from the viewpoint of sedimentary flow. Sedimentary flow can be classified into traction flow, conversional flow and gravity flow based on sedimentology perspective. Among these, traction flow is the foundation of the sedimentary study, which can be further divided into three elementary types (unidirectional flow, bi-directional flow and oscillatory flow) and three compound types (overlay flow, combined flow and superposition flow), which can be further studied using hydromechanics method. The key to the study of conversional flow and gravity flow deposition is the mutual transitions between traction flow and gravity flow, as well as different gravity flow types, such as turbidite current, fluidized sediment flow, grain flow and debris flow. The sedimentary mechanics of flow could be classified into three types which include vertical settling deposition (static water), bed blocking deposition (traction flow) and energy weakening deposition (gravity flow), the interactions of different flow types could finally form the hydrodynamic conditions of hummocky (swaley) cross-bedding. This overview suggests that studying sedimentology from a fluid perspective is feasible in spite of many difficulties, and has an important significance especially in complex hydrodynamic conditions.
Keywords: sedimentary environment   sedimentary flow   sedimentary mechanics   traction flow   gravity flow  
收稿日期 2019-07-01 修回日期 2019-10-28 网络版发布日期  
DOI: 10.3969/j.issn.1004-5589.2020.01.004
基金项目:

国家自然科学基金面上项目(41272119)、云南省教育厅科学研究基金项目(2015Z030)与昆明理工大学自然科学研究基金资助项目(KKSY201321008)联合资助。

通讯作者:
作者简介:
作者Email:

参考文献:
[1] Shanmugam G.50 years of the turbidite paradigm (1950s~1990s):deep-water processes and facies models-a critical perspective[J].Marine and Petroleum Geology, 2000, 17(2):285-342.
[2] Mutti E, Bernoulli D, Lucchi F R, et al.Turbidites and turbidity currents from alpine ‘flysch’ to the exploration of continental margins[J].Sedimentology, 2009, 56(1):267-318.
[3] Perillo M M, Best J L, Yokokawa M, et al.A unified model for bedform development and equilibrium under unidirectional, oscillatory and combined-flows[J].Sedimentology, 2014, 61(7):2063-2085.
[4] Aschoff J L, Olariu C, Steel R J.Recognition and significance of bayhead delta deposits in the rock record:a comparison of modern and ancient systems[J].Sedimentology, 2018, 65(1):62-95.
[5] 李向东,何幼斌,郑昭昌,等.宁夏香山群徐家圈组发现深水复合流沉积构造[J].地质学报,2010,84(2):221-232. LI Xiang-dong, HE You-bin, ZHENG Zhao-chang, et al.Deep-water combined-flow sedimentary structures in Xujiajuan Formation of Xiangshan Group, Ningxia[J].Acta Geologica Sinica,2010,84(2):221-232.
[6] Jobe Z R, Howes N C, Auchter N C.Comparing submarine and fluvial channel kinematics:implications for stratigraphic architecture[J].Geology, 2016, 44(11):931-934.
[7] Mulder T, Syvitski J P M, Migeon S, et al.Marine hyperpycnal flows:initiation, behavior and related deposits; a review[J].Marine and Petroleum Geology, 2003, 20(6):861-882.
[8] Enos P.Anatomy of a flysch[J].Journal of Sedimentary Petrology, 1969, 39(2):680-723.
[9] van de Meene J W H, Boersma J R, Terwindt J H J.Sedimentary structures of combined flow deposits from the shoreface-connected ridges along the central dutch coast[J].Marine Geology, 1996, 131(3/4):151-175.
[10] Kneller B, Buckee C.The structure and fluid mechanics of turbidity currents:a review of some recent studies and their geological implications[J].Sedimentology, 2000, 47(Suppl.1):62-94.
[11] Migeon S, Mulder T, Savoye B, et al.Hydrodynamic processes, velocity structure and stratification in natural turbidity currents:results inferred from field data in the Var Turbidite System[J].Sedimentary Geology, 2012, 245-246:48-62.
[12] Sumner E J, Amy L A, Talling P J.Deposit structure and processes of sand deposition from decelerating sediment suspensions[J].Journal of Sedimentary Research, 2008, 78(8):529-547.
[13] Stevenson C J, Talling P J, Masson D G, et al.The spatial and temporal distribution of grain-size breaks in turbidites[J].Sedimentology, 2014, 61(4):1120-1156.
[14] Ahmed H M A, Gendy M E, Mirdan A M H, et al.Effect of corrugated beds on characteristics of submerged hydraulic jump[J].Ain Shams Engineering Journal, 2014, 5(4):1033-1042.
[15] Cartigny M J B, Ventra D, Postma G, et al.Morphodynamics and sedimentary structures of bedforms under supercritical-flow conditions:new insights from flume experiments[J].Sedimentology, 2014, 61(3):712-748.
[16] 吴嘉鹏,王英民,王海荣,等.深水重力流与底流交互作用研究进展[J].地质论评,2012,58(6):1110-1120. WU Jia-peng, WANG Ying-min, WANG Hai-rong, et al.The interaction between deep-water turbidity and bottom currents:a review[J].Geological Review, 2012, 58(6):1110-1120.
[17] Alonso B, Ercilla G, Casas D, et al.Contourite vs gravity-flow deposits of the Pleistocene Faro Drift (Gulf of Cadiz):sedimentological and mineralogical approaches[J].Marine Geology, 2016, 377(8):77-94.
[18] Patacci M, Haughton P D W, Mccaffrey W D.Flow behavior of ponded turbidity currents[J].Journal of Sedimentary Research, 2015, 85(8):885-902.
[19] Arnott R W C.Turbidites, and the case of the missing dunes[J].Journal of Sedimentary Research, 2012, 82(6):379-384.
[20] Lunt I A, Bridge J S.Formation and preservation of open-framework gravel strata in unidirectional flows[J].Sedimentology, 2007, 54(1):71-87.
[21] Hagadorn J W, Mcdowell C.Microbial influence on erosion, grain transport and bedform genesis in sandy substrates under unidirectional flow[J].Sedimentology, 2012, 59(3):795-808.
[22] Gao Z Z, Eriksson K A, He Y B, et al.Deep-water traction current deposits-a study of internal tides, internal waves, contour currents and their deposits[M]. Beijing:Science Press, New York Utrecht, Tokyo:VSP, 1998:1-56.
[23] 李向东.关于深水环境下内波、内潮汐沉积分类的探讨[J].地质论评,2013,59(6):1097-1109. LI Xiang-dong.Proposed classification of internal-wave and internal-tide deposits in deep-water environment[J].Geological Review, 2013,59(6):1097-1109.
[24] 李向东,何幼斌,张铭记,等.宁夏中奥陶统香山群徐家圈组内波、内潮汐沉积类型[J].地球科学进展,2011,26(9):1006-1014. LI Xiang-dong, HE You-bin, ZHANG Ming-ji, et al.Sedimentary types of internal wave and internal tide deposits of Middle Ordovician, Xujiajuan Formation, Xiangshan Group, Ningxia Autonomous Region, China[J].Advances in Earth Science,2011, 26(9):1006-1014.
[25] O'Donoghue T, Doucette J S, van der Werf J J, et al.The dimensions of sand ripples in full-scale oscillatory flows[J].Coastal Engineering, 2006, 53(12):997-1012.
[26] Cummings D I, Dumas S, Dalrymple R W.Fine-grained versus coarse-grained wave ripples generated experimentally under large-scale oscillatory flow[J].Journal of Sedimentary Research, 2009, 79(2):83-93.
[27] Mackay D A, Dalrymple R W.Dynamic mud deposition in a tidal environment:the record of fluid-mud deposition in the Cretaceous Bluesky Formation, Alberta, Canada[J].Journal of Sedimentary Research, 2011, 81(12):901-920.
[28] Coussot P.Structural similarity and transition from newtonian to non-newtonian behavior for clay-water suspensions[J].Physical Review Letters, 1995, 74(20):3971-3974.
[29] Sumner E J, Talling P J, Amy L A.Deposits of transitional flows between turbidity current and debris flow[J].Geology, 2009, 37(11):991-994.
[30] Kane I A, Pontén A S M.Submarine transitional flow deposits in the Paleogene Gulf of Mexico[J].Geology, 2012, 40(12):1119-1122.
[31] Baas J H, Best J L, Peakall J, et al.A phase diagram for turbulent, transitional, and laminar clay suspension flows[J].Journal of Sedimentary Research, 2009, 79(4):162-183.
[32] Lowe D R, Guy M.Slurry-flow deposits in the Britannia Formation (Lower Cretaceous), North Sea:a new perspective on the turbidity current and debris flow problem[J].Sedimentology, 2000, 47(1):31-70.
[33] Haughton P, Davis C, McCaffrey W, et al.Hybrid sediment gravity flow deposits-classification, origin and significance[J].Marine and Petroleum Geology, 2009, 26(10):1900-1918.
[34] Ito M.Down fan transformation from turbidity currents to debris flows at a channel-to-lobe transitional zone:the Lower Pleistocene Otadai Formation, Boso Peninsula, Japan[J].Journal of Sedimentary Research, 2008, 78(10):668-682.
[35] Felix M, Leszczyński S, S'lączka A, et al.Field expressions of the transformation of debris flows into turbidity currents, with examples from the Polish Carpathians and the French Maritime Alps[J].Marine and Petroleum Geology, 2009, 26(10):2011-2020.
[36] Fallgatter C, Kneller B, Paim P S G, et al.Transformation, partitioning and flow-deposit interactions during the run-out of megaflows[J].Sedimentology, 2017, 64(2):359-387.
[37] Paphitis D, Collins M B.Sand grain threshold, in relation to bed ‘stress history’:an experimental study[J].Sedimentology, 2005, 52(4):827-838.
[38] Niño Y, Lopez F, Garcia M.Threshold for particle entrainment into suspension[J].Sedimentology, 2003, 50(2):247-263.
[39] Lower D R.Sediment gravity flows:Ⅱ. depositional models with special reference to the deposits of high-density turbidity currents[J].Journal of Sedimentary Petrology, 1982, 52(1):279-297.
[40] Hage S, Hubert-Ferrari A, Lamair L, et al.Flow dynamics at the origin of thin clayey sand lacustrine turbidites:examples from lake Hazar, Turkey[J].Sedimentology, 2017, 64(7):1929-1956.
[41] Croix A D L, Dashtgard S E.A synthesis of depositional trends in intertidal and upper subtidal sediments across the tidal-fluvial transition in the Fraser River, Canada[J].Journal of Sedimentary Research, 2015, 85(6):683-698.
[42] Morsilli M, Pomar L.Internal waves vs. surface storm waves:a review on the origin of hummocky cross-stratification[J].Terra Nova, 2012, 24(4):273-282.
[43] Lin C-Y M, Venditti J G.An empirical model of subcritical bedform migration[J].Sedimentology, 2013, 60(7):1786-1799.
[44] Lajeunesse E, Malverti L, Lancien P, et al.Fluvial and submarine morphodynamics of laminar and near-laminar flows:a synthesis[J].Sedimentology, 2010, 57(1):1-26.
[45] Talling P J, Masson D G, Sumner E J, et al.subaqueous sediment density flows:depositional processes and deposit types[J].Sedimentology, 2012, 59(7):1937-2003.
[46] Lazar O R, Bohacs K M, Macquaker J H S, et al.Capturing key attributes of fine-grained sedimentary rocks in outcrops, cores, and thin sections:nomenclature and description guidelines[J].Journal of Sedimentary Research, 2015, 85(3):230-246.
[47] Middleton G V, Hampton M A.Sediment gravity flows:mechanics of flow and deposition[C]//Middleton G V, Bouma A H. Turbidites and deep-water sedimentation.Los Angeles:SEPM Pacific Section, Short Course Anaheim, 1973:1-38.
[48] Meckel T A.Digital rendering of sedimentary-relief peels:implications for clastic facies characterization and fluid flow[J].Journal of Sedimentary Research, 2013, 83(6):495-501.
[49] Talling P J, Malgesini G, Felletti F.Can liquefied debris flows deposit clean sand over large areas of sea floor? field evidence from the Marnoso-Arenacea Formation, Italian Apennines[J].Sedimentology, 2013, 60(3):720-762.
[50] Schieber J, Southard J B, Kissling P, et al.Experimental deposition of carbonate mud from moving suspensions:importance of flocculation and implications for modern and ancient carbonate mud deposition[J].Journal of Sedimentary Research, 2013, 83(11):1025-1031.
[51] Heron D P L.The significance of ice-rafted debris in sturtian glacial successions[J].Sedimentary Geology, 2015, 322:19-33.
[52] Amy L A, Talling P J, Edmonds V O, et al.An experimental investigation of sand-mud suspension settling behaviour:implications for bimodal mud contents of submarine flow deposits[J].Sedimentology, 2006,53(6):1411-1434.
[53] Southard J B, Lambie J M, Federico D C, et al.Experiments on bed configurations in fine sands under bidirectional purely oscillatory flow, and the origin of hummocky cross-stratification[J].Journal of Sedimentary Petrology, 1990, 60(1):1-17.
[54] Sohn Y K.On traction-carpet sedimentation[J].Journal of Sedimentary Research, 1997, 67(3):502-509.
[55] Kneller B C, Branney M J.Sustained high-density turbidity currents and the deposition of thick massive sands[J].Sedimentology, 1995, 42(4):607-616.
[56] Dumas S, Arnott R W C.Origin of hummocky and swaley cross-stratification:the controlling influence of unidirectional current strength and aggradation rate[J].Geology, 2006, 34(12):1073-1076.
本刊中的类似文章
1.贾雨东, 王德海, 王新宇, 巴燕·夏木提汗, 郭忆茹.天津蓟州雾迷山组与洪水庄组沉积环境与地球化学特征[J]. 世界地质, 2020,39(3): 569-577
2.侯艳平, 任延广, 孙丽, 张海军, 吴海波, 彭威, 李敬生.海拉尔盆地东明凹陷明D2井白垩系沉积特征及沉积环境分析[J]. 世界地质, 2020,39(2): 332-343
3.申林, 刘招君, 胡菲, 李建国, 赵丁名, 万涛.松辽盆地大庆长垣南端上白垩统四方台组古环境特征及演化[J]. 世界地质, 2019,38(4): 988-998
4.张坤, 柳蓉, 刘招君, 张超.梅河盆地梅河组含煤-油页岩岩系成矿特征分析[J]. 世界地质, 2017,36(3): 903-912
5.孙守亮, 李永飞, 陈树旺, 郜晓勇, 孙求实, 张坤, 周铁锁.金羊盆地北票组沉积环境及烃源岩有机地球化学特征[J]. 世界地质, 2017,36(3): 889-902
6.杜贵超, 仓辉, 胡双全, 曹卿荣, 高鹏鹏.泰国呵叻盆地二叠系碳酸盐岩元素地球化学特征与古环境意义[J]. 世界地质, 2017,36(1): 135-143
7.杨孝, 李廷艳, 尤源, 郝炳英, 冯胜斌, 毛振华.鄂尔多斯盆地合水地区延长组长 6 段砂体结构特征及成因分析[J]. 世界地质, 2016,35(3): 789-800
8.陈井胜, 邢德和, 刘淼, 张德军, 马国祥, 杨佳林, 张志斌.内蒙古元宝山小建昌营子地区三面井组沉积环境[J]. 世界地质, 2015,34(4): 1013-1023
9.宋朔, 刘招君, 孙平昌, 王艺萌, 谢文泉, 宋青磊.红色泥岩层系地球化学特征及物源分析—以松辽盆地东南隆起区上白垩统姚家组为例[J]. 世界地质, 2015,34(3): 774-785
10.曲远馨, 孙国胜, 许中杰, 张建泽, 王春光, 苏蓉, 王刚, 李东.青海赛多浦岗日地区雀莫错组粒度特征及沉积环境[J]. 世界地质, 2015,34(2): 436-444
11.于健, 郭巍, 王少华, 林斌.饶河地区大岭桥组沉积环境恢复及其地质意义[J]. 世界地质, 2015,34(1): 113-119
12.吴佳男, 王德海, 刘立, 曲希玉, 王福魁.吉中磐石地区石炭纪鹿圈屯组沉积环境[J]. 世界地质, 2014,33(1): 86-93
13.马俊明1, 薛林福1, 付少英2, 赵聪俐3, 李文博1.南海神狐海域地震--沉积相分析与沉积环境演化[J]. 世界地质, 2013,32(2): 359-365
14.李伍志, 王璞珺, 吴景富, 鲁宝亮, 郎元强.南海南、北陆缘中生代构造层序及其沉积环境[J]. 世界地质, 2011,30(4): 567-572
15.张建伟,王锡魁, 袁西龙,郭慧玲,申卫星,陈岩,周长忠.泰山南坡第四纪沉积物石英砂表面特征及沉积环境指示[J]. 世界地质, 2011,30(3): 463-468

Copyright by 世界地质