[an error occurred while processing this directive] Global Geology 2023, 26(3) 167-176 DOI:     ISSN: 1673-9736 CN: 22-1371/P

本期目录 | 下期目录 | 过刊浏览 | 高级检索                                                            [打印本页]   [关闭]
论文
扩展功能
本文信息
Supporting info
PDF(504KB)
[HTML全文]
参考文献[PDF]
参考文献
服务与反馈
把本文推荐给朋友
加入我的书架
加入引用管理器
引用本文
Email Alert
文章反馈
浏览反馈信息
本文关键词相关文章
 
本文作者相关文章
PubMed
Article by Zheng C
Article by Zhao Q
Article by Fan G
Article by Zhao KAPT
 
 
 
摘要:  
关键词    
 Comparative study on isolation forest, extended isolation forest and generalized isolation forest in detection of multivariate geochemical anomalies
 ZHENG Chenyi, ZHAO Qingying* , FAN Guoyu, ZHAO Keyu and PIAO Taisheng
 College of Earth Sciences, Jilin University, Changchun 130061, China
Abstract:  It is not easy to construct a model to describe the geochemical background in geochemical anomaly detection due to the complexity of the geological setting. Isolation forest and its improved algorithms can detect geochemical anomalies without modeling the complex geochemical background. These methods can effectively extract multivariate anomalies from large volume of high-dimensional geochemical data with unknown population distribution. To test the performance of these algorithms in the detection of mineralization-related geochemical anomalies, the isolation forest, extended isolation forest and generalized isolation forest models were established to detect multivariate anomalies from the stream sediment survey data collected in the Wulaga area in Heilongjiang Province. The geochemical anomalies detected by the generalized isolation forest model account for 40% of the study area, and contain 100% of the known gold deposits. The geochemical anomalies detected by the isolation forest model account for 20% of the study area, and contain 71% of the known gold deposits. The geochemical anomalies detected by the extended isolation forest algorithm account for 34% of the study area, and contain 100% of the known gold deposits. Therefore, the isolation forest model, extended isolation fo-rest model and generalized isolation forest model are comparable in geochemical anomaly detection.
Keywords:  isolation forest   extended isolation forest   generalized isolation forest   Youden index   geochemical anomaly identification  
收稿日期  修回日期  网络版发布日期  
DOI:
基金项目:

 

通讯作者:
作者简介:
作者Email:

参考文献:
 
本刊中的类似文章
1.. [J]. Global Geology, 2023,26(4): 237-250
2.. [J]. Global Geology, 2023,26(4): 199-210
3.. [J]. Global Geology, 2023,26(4): 251-263
4.. [J]. Global Geology, 2023,26(4): 222-236
5.. [J]. Global Geology, 2023,26(4): 211-221
6.. [J]. Global Geology, 2023,26(4): 264-272
7.. [J]. Global Geology, 2023,26(3): 177-188
8.. [J]. Global Geology, 2023,26(3): 157-166
9.. [J]. Global Geology, 2023,26(3): 189-198
10.. [J]. Global Geology, 2023,26(3): 146-156
11.. [J]. Global Geology, 2023,26(3): 133-145
12.. [J]. Global Geology, 2023,26(2): 122-132
13.. [J]. Global Geology, 2023,26(2): 63-73
14.. [J]. Global Geology, 2023,26(2): 114-121
15.. [J]. Global Geology, 2023,26(2): 74-97

Copyright by Global Geology