[an error occurred while processing this directive] Global Geology 2023, 26(2) 122-132 DOI:     ISSN: 1673-9736 CN: 22-1371/P

本期目录 | 下期目录 | 过刊浏览 | 高级检索                                                            [打印本页]   [关闭]
论文
扩展功能
本文信息
Supporting info
PDF(358KB)
[HTML全文]
参考文献[PDF]
参考文献
服务与反馈
把本文推荐给朋友
加入我的书架
加入引用管理器
引用本文
Email Alert
文章反馈
浏览反馈信息
本文关键词相关文章
 
本文作者相关文章
PubMed
Article by Yang Y
Article by Xu M
Article by Li S
Article by Wang M
Article by Liu ZAZS
 
 
 
摘要:  
关键词    
 Classification of vegetative types in Changbai Mountain based on optical and microwave remote sensing data
 YANG Ying1 , XU Mengxia2* , LI Sheng1 , WANG Mingchang2 , LIU Ziwei2 and ZHAO Shijun3
 1. Shenzhen Data Management Center of Planning and Natural Resources, Shenzhen 518034, Guangdong, China;
2. College of Geo-Exploration Science and Technology, Jilin University, Changchun 130026, China;
3. China Water Northeastern Investigation, Design & Research Co., Ltd., Changchun 130021, China
Abstract:  Highly accurate vegetative type distribution information is of great significance for forestry resource monitoring and management. In order to improve the classification accuracy of forest types, Sentinel-1 and 2 data of Changbai Mountain protection development zone were selected, and combined with DEM to construct a multi-featured random forest type classification model incorporating fusing intensity, texture, spectral, vegetation index and topography information and using random forest Gini index (GI) for optimization. The overall accuracy of classification was 94.60% and the Kappa coefficient was 0.933. Comparing the classification results before and after feature optimization, it shows that feature optimization has a greater impact on the classification accuracy. Comparing the classification results of random forest, maximum likelihood method and CART decision tree under the same conditions, it shows that the random forest has a higher performance and can be applied to forestry research work such as forest resource survey and monitoring.
Keywords:  vegetative type classification   random forest   radar data   optical data  
收稿日期  修回日期  网络版发布日期  
DOI:
基金项目:

 

通讯作者:
作者简介:
作者Email:

参考文献:
 
本刊中的类似文章
1.. [J]. Global Geology, 2023,26(3): 146-156
2.. [J]. Global Geology, 2023,26(3): 189-198
3.. [J]. Global Geology, 2023,26(3): 167-176
4.. [J]. Global Geology, 2023,26(3): 133-145
5.. [J]. Global Geology, 2023,26(3): 157-166
6.. [J]. Global Geology, 2023,26(3): 177-188
7.. [J]. Global Geology, 2023,26(2): 98-113
8.. [J]. Global Geology, 2023,26(2): 74-97
9.. [J]. Global Geology, 2023,26(2): 114-121
10.. [J]. Global Geology, 2023,26(2): 63-73
11.. [J]. Global Geology, 2023,26(1): 1-8
12.. [J]. Global Geology, 2023,26(1): 9-20
13.. [J]. Global Geology, 2023,26(1): 21-30
14.. [J]. Global Geology, 2023,26(1): 31-39
15.. [J]. Global Geology, 2023,26(1): 47-56

Copyright by Global Geology