[an error occurred while processing this directive] Global Geology 2023, 26(2) 114-121 DOI:     ISSN: 1673-9736 CN: 22-1371/P

本期目录 | 下期目录 | 过刊浏览 | 高级检索                                                            [打印本页]   [关闭]
论文
扩展功能
本文信息
Supporting info
PDF(406KB)
[HTML全文]
参考文献[PDF]
参考文献
服务与反馈
把本文推荐给朋友
加入我的书架
加入引用管理器
引用本文
Email Alert
文章反馈
浏览反馈信息
本文关键词相关文章
 
本文作者相关文章
PubMed
Article by Pak K
Article by Ho Y
Article by Peng J
Article by Ri JAHC
 
 
 
摘要:  
关键词    
 Discussion of reasonable drilling parameters in impregnated diamond bit drilling
 PAK Kumdol1,2, HO Yinchol3 , PENG Jianming2* , RI Jaemyong1 and HAN Changson1
 1. School of Resource Exploration Engineering, Kim Chaek University of Technology, Pyongyang 999093, D.P.R. Korea;
2. College of Construction Engineering, Jilin University, Changchun 130026, China;
3. School of Information Science and Technology, Kim Chaek University of Technology, Pyongyang 999093, D.P.R. Korea
Abstract:   The impregnated diamond (ID) bit drilling is one of the main rotary drilling methods in hard rock drilling and it is widely used in mineral exploration, oil and gas exploration, mining, and construction industries. In this study, the quadratic polynomial model in ID bit drilling process was proposed as a function of controllable mechanical operating parameters, such as weight on bit (WOB) and revolutions per minute (RPM). Also, artificial neural networks (ANN) model for predicting the rate of penetration (ROP) was developed using datasets acquired during the drilling operation. The relationships among mechanical operating parameters (WOB and RPM) and ROP in ID bit drilling were analyzed using estimated quadratic polynomial model and trained ANN model. The results show that ROP has an exponential relationship with WOB, whereas ROP has linear relationship with RPM. Finally, the optimal regime of mechanical drilling parameters to achieve high ROP was confirmed using proposed model in combination with rock breaking principal.
Keywords:     rate of penetration (ROP)   impregnated diamond bit   drilling operating parameter   artificial neural network  
收稿日期  修回日期  网络版发布日期  
DOI:
基金项目:

 

通讯作者:
作者简介:
作者Email:

参考文献:
 
本刊中的类似文章
1.. [J]. Global Geology, 2023,26(3): 177-188
2.. [J]. Global Geology, 2023,26(3): 167-176
3.. [J]. Global Geology, 2023,26(3): 133-145
4.. [J]. Global Geology, 2023,26(3): 157-166
5.. [J]. Global Geology, 2023,26(3): 146-156
6.. [J]. Global Geology, 2023,26(3): 189-198
7.. [J]. Global Geology, 2023,26(2): 122-132
8.. [J]. Global Geology, 2023,26(2): 74-97
9.. [J]. Global Geology, 2023,26(2): 63-73
10.. [J]. Global Geology, 2023,26(2): 98-113
11.. [J]. Global Geology, 2023,26(1): 31-39
12.. [J]. Global Geology, 2023,26(1): 9-20
13.. [J]. Global Geology, 2023,26(1): 21-30
14.. [J]. Global Geology, 2023,26(1): 1-8
15.. [J]. Global Geology, 2023,26(1): 57-62

Copyright by Global Geology