[an error occurred while processing this directive] 世界地质 2020, 39(1) 193-200 DOI:   10.3969/j.issn.1004-5589.2020.01.020  ISSN: 1004-5589 CN: 22-1111/P

本期目录 | 下期目录 | 过刊浏览 | 高级检索                                                            [打印本页]   [关闭]
遥感·土地
扩展功能
本文信息
Supporting info
PDF(920KB)
[HTML全文]
参考文献[PDF]
参考文献
服务与反馈
把本文推荐给朋友
加入我的书架
加入引用管理器
引用本文
Email Alert
文章反馈
浏览反馈信息
本文关键词相关文章
波段平均太阳辐照度
Landsat 8
太阳光谱
光谱响应
本文作者相关文章
范博文
潘军
蒋立军
仲伟敬
张文哲
卞宇涛
PubMed
Article by Fan B
Article by Pan J
Article by Jiang L
Article by Zhong W
Article by Zhang W
Article by Bian Y
Landsat 8卫星OLI传感器波段平均太阳辐照度计算
范博文1, 潘军1, 蒋立军1, 仲伟敬2, 张文哲1, 卞宇涛1
1. 吉林大学地球探测科学与技术学院, 长春 130026;
2. 西安卫星测控中心第一活动站, 陕西渭南 714000
摘要: 卫星传感器波段平均太阳辐照度(solar exoatmospheric spectral irradiances,简称ESUN)是反演地表温度、大气顶部反射率的重要参数。目前,Landsat 8卫星的传感器ESUN值美国地质调查局仍未公布。采用ChKur、WRC、Thuillier、ASTM和Wehrli太阳光谱数据,结合Landsat 8卫星的相对光谱响应数据,使用代入计算的方法分别计算了OLI传感器各波段的ESUN值。与ChKur数据计算的结果相比,应用Wehrli数据计算的结果均方根误差最小,使用WRC数据计算的结果均方根误差最大。为验证结果,用同样的方法计算了基于ChKur太阳光谱数据的Landsat 7卫星ETM+传感器的ESUN值,并与美国地质调查局官方推荐的结果做对比,结果表明,基于ChKur太阳光谱数据采用该方法计算结果较为符合官方数据。
关键词 波段平均太阳辐照度   Landsat 8   太阳光谱   光谱响应  
Calculation of solar exoatmospheric spectral irradiances of Landsat 8 satellite OLI sensor
FAN Bo-wen1, PAN Jun1, JIANG Li-jun1, ZHONG Wei-jing2, ZHANG Wen-zhe1, BIAN Yu-tao1
1. College of Geo-exploration Science and Technology, Jilin University, Changchun 130026, China;
2. First Activity Station, Xi'an Satellite Control Center, Weinan 714000, Shaanxi, China
Abstract: Satellite sensor solar exoatmospheric spectral irradiances (ESUN) are the key parameters to retrieve land surface temperature or calculate top of atmosphere reflectance. The United States Geological Survey (USGS) has not announced the recommended ESUN values of Landsat 8 satellite at present. The authors selected ChKur, WRC, Thuillier, ASTM and Wehrli solar spectrum datasets, combined with Landsat 8 satellite relative spectral response data, and calculated ESUN of Landsat 8 OLI sensor by method of substitution. Compared with ChKur data, the results calculated based on Wehrli data have the smallest root mean square error (RMSE), while the results calculated based on WRC data have the largest RMSE. In order to verify the results, the authors calculated ESUN values of Landsat 7 ETM+ sensor based on ChKur solar spectrum dataset, then compared with USGS results. It shows that based on the ChKur solar spectral curve, the results calculated by this method match the official data better.
Keywords: solar exoatmospheric spectral irradiances   Landsat 8   solar spectrum   spectral response  
收稿日期 2019-09-17 修回日期 2019-12-17 网络版发布日期  
DOI: 10.3969/j.issn.1004-5589.2020.01.020
基金项目:

高等学校博士学科点专项科研基金新教师类资助课题项目(20110061120067)

通讯作者: 潘军(1971),男,副教授,主要从事遥感与地理信息系统教学和科研工作。E-mail:panj@jlu.edu.cn
作者简介:
作者Email: panj@jlu.edu.cn

参考文献:
[1] 于一凡,潘军,邢立新,等.短波红外波段高温目标识别的可行性分析[J].国土资源遥感,2014, 26(1):25-30. YU Yi-fan, PAN Jun, XING Li-xin, et al. Feasibility analysis of shortwave infrared band for recognition of high temperature target[J]. Remote Sensing for Land & Resources, 2014,26(1):25-30.
[2] 徐涵秋.Landsat遥感影像正规化处理的模型比较研究[J].地球信息科学,2008,13(3):294-301. XU Han-qiu. Comparison of the models for the normalization of Landsat imagery[J]. Geo-Information Science, 2008,13(3):294-301.
[3] Smith S. How to convert ASTER radiance values to reflectance, an online guide[EB/OL].http://www.cnrhome.uidaho.edu/default.aspx?pid=85984[2011-08-15].
[4] 胡顺石,张立福,张霞,等.卫星传感器波段平均太阳辐照度计算及可靠性分析[J].国土资源遥感,2012,24(3):97-102. HU Shun-shi, ZHANG Li-fu, ZHANG Xia, et al. Calculation and reliability analysis of satellite sensors band solar irradiance[J]. Remote Sensing for Land & Resources, 2012,24(3):97-102.
[5] 张璐,施润和,徐永明,等.国产遥感传感器大气层外波段平均太阳光谱辐照度计算[J].地球信息科学学报,2014,16(4):621-627. ZHANG Lu, SHI Run-he, XU Yong-ming, et al. Calculation of mean solar exoatmospheric irradiances of several sensors onboard of Chinese domestic remote sensing satellites[J].Journal of Geo-Information Science,2014,16(4):621-627.
[6] 黄炎. GF-1卫星传感器波段平均太阳辐照度计算及应用[C]//中国遥感应用协会.第十八届中国环境遥感应用技术论坛论文集.西宁:中国遥感应用协会,2014:345-349. HUANG Yan. Calculation and application of mean solar exoatmospheric irradiances of GF-1 satellite sensor[C]//China Association of Remote Sensing Application. Proceedings of the 18th China Environmental Remote Sensing Application Technology Forum. Xining:China Association of Remote Sensing Application,2014:345-349.
[7] 潘志强,傅俏燕,张浩平.CBERS-02星CCD波段平均太阳辐照度反演及应用[J].地球信息科学,2008,12(1):109-113. PAN Zhi-qiang, FU Qiao-yan, ZHANG Hao-ping. Retrieval and application of band mean solar irradiance of CBERS-02 CCD[J]. Geo-Information Science, 2008,12(1):109-113.
[8] Esad M, Md H, Nischal M. Radiometric calibration updates to the landsat collection[C]. San Diego:USA Proceedings of SPIE,2016:9972.
[9] 郭春颖. 基于国产高分辨率遥感卫星数据的上海地区气溶胶光学厚度反演:硕士学位论文[D].上海:华东师范大学,2018. GUO Chun-ying. Retrieval of aerosol optical depth in Shanghai using remotely sensed data of Chinese high resolution satellites:master's degree thesis[D]. Shanghai:East China Normal University,2018.
[10] Murphy T, Meiksin A. A library of high-resolution Kurucz spectra in the range λλ 3000~10000[J]. Monthly Notices of the Royal Astronomical Society,2004,351(4):1430-1438.
[11] Kelly C, Robert S. Ring effect studies:rayleigh scattering, including molecular parameters for rotational Raman scattering, and the Fraunhofer spectrum[J]. Applied Optics,1997,36(21):5224-5230.
[12] Christian G. The sun's total and spectral irradiance for solar energy applications and solar radiation models[J]. Solar Energy, 2004,76(4):423-453.
[13] Gyanesh C, Brian M, Dennis H. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors[J]. Remote Sensing of Environment, 2009,113(5):893-903.
[14] Margit H, Micha S, Thierry D, et al. A new observational solar irradiance composite[J]. Journal of Geophysical Research:Space Physics, 2017,122(6):5910-5930.
[15] Thuillier G, Hersé M, Labs D, et al. The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the Atlas and Eureca missions[J]. Solar Physics, 2003,214(1):1-22.
[16] Heinz N, Dietrich L. Improved data of solar spectral irradiance from 0.33 to 1.25μ[J]. Solar Physics, 1981,74(1):231-249.
[17] Mishra N, Md H, Larry L, et al. Radiometric cross calibration of Landsat 8 operational land imager (OLI) and Landsat 7 enhanced thematic mapper plus (ETM+)[J].Remote Sensing, 2014,6(12):12619-12638.
[18] 徐涵秋. 新型Landsat8卫星影像的反射率和地表温度反演[J].地球物理学报,2015,58(3):741-747. XU Han-qiu. Retrieval of the reflectance and land surface temperature of the newly-launched Landsat 8 satellite[J]. Chinese Journal of Geophysics,2015,58(3):741-747.
本刊中的类似文章
1.宋玉莲, 王明常, 王凤艳.长春市区土地利用变化对地表温度的影响[J]. 世界地质, 2020,39(3): 714-720
2.韩冰冰, 陈圣波.基于GEE时间序列遥感影像分类方法研究[J]. 世界地质, 2020,39(3): 706-713
3.范语思, 李月芬, 张玉树, 王灵芝.吉林西部县域“旱改水”时空演变特征及驱动机制分析[J]. 世界地质, 2020,39(2): 444-451,470
4.马萍, 王冬艳.基于逻辑回归模型的四平市景观格局演变及其驱动力分析[J]. 世界地质, 2020,39(2): 452-461
5.张文哲, 潘军, 蒋立军, 仲伟敬, 张雪峰, 范博文, 卞宇涛.基于非局部均值滤波的SAR图像抑噪[J]. 世界地质, 2020,39(2): 462-470
6.黄龙霄, 张旭晴, 赵强, 高明久, 程微, 安继魁, 吴迪.基于SBAS-InSAR的辽宁义县中东部区域地表沉降监测[J]. 世界地质, 2020,39(1): 201-207
7.于海洋, 陈圣波, 杨北萍, 安秦.基于遗传算法优化BP神经网络的玉米遥感估产方法[J]. 世界地质, 2020,39(1): 208-214
8.韩嘉圻, 王建国, 邢梓涵, 赵博轩, 孙贝雯, 谭众元.伊通河流域土地利用变化及其生态响应[J]. 世界地质, 2020,39(1): 215-225
9.张配, 姜琦刚, 刘正宏, 师超.基于多源遥感数据的松辽平原中部古水系研究[J]. 世界地质, 2019,38(4): 1099-1110
10.许军强, 张斌, 袁晶, 卢意恺.基于遥感技术的南水北调水源区(河南段)石漠化遥感调查与评价[J]. 世界地质, 2019,38(4): 1091-1098
11.于子钧, 刘斌, 姜琦刚, 杨长保.基于RTK的高程数据对比分析[J]. 世界地质, 2019,38(2): 549-555
12.陈超群, 姜琦刚, 刘骅欣.吉林西部湿地动态变化与生态因子分析研究[J]. 世界地质, 2019,38(2): 539-548
13.曹竞文, 李淑杰, 齐鲁, 杜婉婷, 黄梦佳.基于泰森多边形的汪清县农村居民点空间分布特征及其影响因素[J]. 世界地质, 2019,38(1): 268-276
14.杨彤, 姜琦刚, 王康, 于德浩, 王李, 杨清雷.基于GIS的地下工程选址技术与应用[J]. 世界地质, 2019,38(1): 277-285
15.孙茂军, 李霞, 李小刚, 谢小伟.基于MODIS与GLDAS数据的湟水河流域土壤水反演[J]. 世界地质, 2019,38(1): 286-292

Copyright by 世界地质