[an error occurred while processing this directive] 世界地质 2020, 39(1) 135-140 DOI:   10.3969/j.issn.1004-5589.2020.01.013  ISSN: 1004-5589 CN: 22-1111/P

本期目录 | 下期目录 | 过刊浏览 | 高级检索                                                            [打印本页]   [关闭]
地球物理
扩展功能
本文信息
Supporting info
PDF(671KB)
[HTML全文]
参考文献[PDF]
参考文献
服务与反馈
把本文推荐给朋友
加入我的书架
加入引用管理器
引用本文
Email Alert
文章反馈
浏览反馈信息
本文关键词相关文章
介电常数
低损耗介质
辐射传输方程
Gauss-Seidel迭代
本文作者相关文章
王志明
杨莹
吴世红
许刚
李静
PubMed
Article by Wang Z
Article by Yang Y
Article by Wu S
Article by Xu G
Article by Li J
基于辐射传输方程的低损耗介质微波介电常数反演
王志明, 杨莹, 吴世红, 许刚, 李静
交通运输部天津水运工程科学研究所, 天津 300456
摘要: 微波介电常数是分析和研究微波与介质之间相互作用的重要基础参数之一。笔者设计了一种针对低损耗介质微波介电常数的反演方法。引入并改进了辐射传输方程,将介质介电常数的实部和虚部与其微波亮温相关联。在温度均匀分布且表面光滑的条件下,利用改进的辐射传输方程,构造了低损耗介质微波介电常数的反演模型。基于模拟月壤物质,进行了反演模型的验证。结果表明,反演的介电常数的实部与北京师范大学提供的检测结果吻合良好,虚部与阿波罗14号月壤样品的平均测量值吻合良好。
关键词 介电常数   低损耗介质   辐射传输方程   Gauss-Seidel迭代  
Inversion of microwave dielectric constant of low-loss medium based on radiative transfer equation
WANG Zhi-ming, YANG Ying, WU Shi-hong, XU Gang, LI Jing
Tianjin Research Institute for Water Transport Engineering, MOT, Tianjin 300456, China
Abstract: Microwave dielectric constant of medium is one of the important basic parameters to analyze and study the interaction between the microwave and the medium. An inversion method is constructed to retrieve the microwave dielectric constant of the low-loss medium. The radiative transfer equation is introduced and improved to relate the real and imaginary part of the microwave dielectric constant of the medium to its microwave brightness temperature. Then, the model for retrieving the dielectric constant of low-loss medium is constructed with the improved radiative transfer equation on conditions that the temperature is uniformly distributed and the surface is smooth. The result shows, the real part of inversion model is validated with the resulto from Beijing Normal University, and the imaginary part is validated well with the lunar sample from Apdlo 14.
Keywords: microwave dielectric constant   low-loss medium   radiative transfer equation   Gauss-Seidel iteration  
收稿日期 2019-05-22 修回日期 2019-08-16 网络版发布日期  
DOI: 10.3969/j.issn.1004-5589.2020.01.013
基金项目:

中央级公益性科研院所基本科研业务费(TKS180409,TKS180401)

通讯作者: 杨莹(1983),女,高级工程师,主要从事遥感技术和交通环保研究。E-mail:yangyinggis@foxmail.com
作者简介:
作者Email: yangyinggis@foxmail.com

参考文献:
[1] 施建成, 杜阳, 杜今阳, 等. 微波遥感地表参数反演进展[J]. 中国科学(地球科学), 2012, 42(6):814-842. SHI Jian-cheng, DU Yang, DU Jin-yang, et al. Advances in remote sensing microwave surface parameters inversion[J]. Science China(Earth Science), 2012, 42(6):814-842.
[2] Ulaby F T, Moore R K, Fung A K. Microwave remote sensing:active and passive[M]. Massachusetts:Wesley Publishing Company, 1981:1-10.
[3] 张俊荣, 张德海, 王丽巍. 微波遥感中的介电常数[J].遥感技术与应用, 1994, 9(2):30-43. ZHANG Jun-rong, ZHANG De-hai, WANG Li-wei. The dielectric constant in microwave remote sensing[J]. Remote Sensing Technology and Application, 1994, 9(2):30-43.
[4] Courtney W E. Analysis and evaluation of a method of measuring the complex permittivity and permeability of microwave insulators[J]. IEEE Microwave Theory and Techniques Society, 1970, 18(8):476-485.
[5] Roberts S, Von Hippel A. A new method for measuring dielectric constant and loss in the range of centimeter waves[J]. Journal of Applied Physics, 1946, 17(7):610-616.
[6] Staebell K F, Misra D. An experimental technique for in vivo permittivity measurement of materials at microwave frequencies[J]. IEEE Transactions on Microwave Theory and Techniques, 1990, 38(3):337-339.
[7] 张金标, 邵方武. 介质复数介电常数的微波测量[J]. 电子科学学刊, 1988, 10(1):92-96. ZHANG Jin-biao, SHAO Fang-wu. Microwave measurement of complex dielectric constant[J]. Journal of Electronics, 1988, 10(1):92-96.
[8] 赵柏林, 赵文中, 杜金林. 地物微波介电常数的测量[J].科学通报,1982,22:1379-1382. ZHAO Bo-lin, ZHAO Wen-zhong, DU Jin-lin. Measurement of microwave dielectric constant of the objects[J]. Chinese Science Bulletin, 1982, 22:1379-1382.
[9] 陈定一, 顾瑞龙. 湿土微波介电性质的实验研究[J]. 上海交通大学学报, 1988, 22(4):83-92. CHEN Ding-yi, GU Rui-long. An experimental study on microwave dielectric behavior of wet soil[J]. Journal of Shanghai Jiaotong Univeristy, 1988, 22(4):83-92.
[10] 陈秉钧, 邵俊清, 郭树旭, 等. 测量物质介电常数的新微波方法[J]. 吉林大学自然科学学报, 1992, 2(2):57-59. CHEN Bing-jun, SHAO Jun-qing, GUO Shu-xu, et al. A new microwave method to measure the dielectric constant of the medium[J]. Acta Scientiarum Naturalium Universitatis Jilinensis, 1992, 2(2):57-59.
[11] Hallikainen M T, Ulaby F T, Dobson M C, et al. Microwave dielectric behavior of wet soil-part I:empirical models and experimental observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 1985, 23(1):25.
[12] 张俊荣, 张德海, 王丽巍, 等. 微波遥感典型地物介电常数实地测量[J]. 电子科学学刊, 1997, 19(4):566-569. ZHANG Jun-rong, ZHANG De-hai, WANG Li-wei, et al. In situ measurement of typical objects' permittivities in microwave remote sensing[J]. Journal of Electronics, 1997, 19(4):566-569.
[13] 李丽英, 张立新, 赵少杰. 冻土介电常数的实验研究[J]. 北京师范大学学报(自然科学版), 2007, 43(3):241-244. LI Li-ying, ZHANG Li-xin, ZHAO Shao-jie. Laboratory measurement of the dielectric constant of frozen soil[J]. Journal of Beijing Normal University (Natural Science), 2007, 43(3):241-244.
[14] 吴昌英, 丁君, 韦高, 等. 一种微波介质谐振器介电常数测量方法[J]. 测控技术, 2008, 27(6):95-97. WU Chang-ying, DING Jun, WEI Gao, et al. Measurement of dielectric properties of dielectric resonator at microwave frequency[J]. Measurement & Control Technology, 2008, 27(6):95-97.
[15] Meng Z G, Zhao R, Cai Z C, et al. Microwave thermal emission at Tycho area and its geological significance[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(6):7616-7619.
[16] Heiken G H, Vaniman D T, French B M. Lunar sourcebook:a user's guide to the Moon[M]. Cambridge:Cambridge University Press, 1991:536-552.
[17] 金亚秋, 颜锋华, 梁子长. 微波辐射计对月面特征参数的遥感理论模拟[J]. 电波科学学报, 2003, 18(5):477-486. JIN Ya-qiu, YAN Feng-hua, LIANG Zi-chang. Simulation of brightness temperature from the Lunar surface using multi-channels microwave radiometers[J]. Chinese Journal of Radio Science, 2003, 18(5):477-486.
[18] Meng Z G, Xu Y, Cai Z Z, et al. Influence of Lunar topography on simulated surface temperature[J]. Advances in Space Research, 2014, 54(10):2131-2139.
[19] Desai C S, Saadatmanesh H, Allen T. Behavior of compacted Lunar simulants using new vacuum triaxial device[J]. Aerospace Engineering, 1992, 5(4):425-441.
[20] 刘春茹, 王世杰, 冯俊明. 我国低钛月海型模拟月壤初始物质选择的地球化学依据[J]. 矿物岩石, 2007, 27(3):28-33. LIU Chun-ru, WANG Shi-jie, FENG Jun-ming, et al. The geochemistry evidence for selecting the suitable raw material in China to simulate the low titanium Lunar soil from Luna-sea basalt[J]. Journal of Mineralogy and Petrology, 2007, 27(3):28-33.
[21] Meng Z G, Chen S B, Du X J, et al. Influence of temperature and frequency on microwave dielectric properties of Lunar regolith simulant[J]. Chinese Geographical Science, 2011, 21(1):94-101.
本刊中的类似文章
1.宋玉莲, 王明常, 王凤艳.长春市区土地利用变化对地表温度的影响[J]. 世界地质, 2020,39(3): 714-720
2.韩婷婷, 邢立新, 张福坤, 李长伟.基于时间序列的地表温度反演: 以松江河地区为例[J]. 世界地质, 2016,35(4): 1151-1157
3.孟旭, 刘四新, 吴俊军, 傅磊, 邓莉.时间域跨孔雷达全波形反演及实际应用[J]. 世界地质, 2016,35(1): 256-263
4.尤志鑫, 冯晅, 鹿琪.LNAPL 污染物及水含量对石英砂介电常数的影响[J]. 世界地质, 2015,34(2): 551-556
5.李洪丽, 鹿琪, 冯晅, 刘财, 梁文婧, 邹立龙.LNAPL 污染土壤介电性质的实验研究———以石英砂为例[J]. 世界地质, 2012,31(2): 426-433

Copyright by 世界地质