[an error occurred while processing this directive] 世界地质 2020, 39(3) 731-736 DOI:   10.3969/j.issn.1004-5589.2020.03.025  ISSN: 1004-5589 CN: 22-1111/P

本期目录 | 下期目录 | 过刊浏览 | 高级检索                                                            [打印本页]   [关闭]
土地·试验
扩展功能
本文信息
Supporting info
PDF(1167KB)
[HTML全文]
参考文献[PDF]
参考文献
服务与反馈
把本文推荐给朋友
加入我的书架
加入引用管理器
引用本文
Email Alert
文章反馈
浏览反馈信息
本文关键词相关文章
电感耦合等离子体质谱法
辉钼矿
稀土元素
内标法
本文作者相关文章
王琳琳
王力
霍亮
李予晋
PubMed
Article by Wang L
Article by Wang L
Article by Huo L
Article by Li Y
电感耦合等离子体质谱法测定辉钼矿中稀土元素
王琳琳, 王力, 霍亮, 李予晋
吉林大学地球科学学院, 长春 130061
摘要: 采用In元素作为内标消除基体干扰效应,优化电感耦合等离子体质谱仪的工作参数,建立了辉钼矿中15种稀土元素含量的测定方法。仪器检测限为0.000 9~0.002 9 μg/L,加入标准物质的回收率为99%~104%。钼标准物质测试结果的相对标准偏差(RSD)为2.1%~6.7%,与标准值相符。对吉林舒兰长安堡钼矿床的3个辉钼矿样品进行了稀土元素的分析,测试结果相对标准偏差均<5%,结合标准物质测定和加标回收方法的验证表明,该实验方法可用于辉钼矿中稀土元素的准确测定。
关键词 电感耦合等离子体质谱法   辉钼矿   稀土元素   内标法  
Determination of rare earth element in molybdenite by ICP-MS
WANG Lin-lin, WANG Li, HUO Liang, LI Yu-jin
College of Earth Sciences, Jilin University, Changchun 130061, China
Abstract: A method for the determination of 15 rare earth elements in molybdenite by inductively coupled plasma mass spectrometry was established. Indium was used as internal standard to eliminate the matrix interference effect and the working parameters of ICP-MS were optimized. The detection limit of the instrument was 0.000 9~0.002 9 μg/L, and the recovery of the standard material was 99%~104%. The relative standard deviation (RSD) of molybdenum standard sample is 2.1%~6.7%, which is consistent with the standard value. Based on the standard material determination and standard addition recovery method,the REE analysis results of three molybdenite samples from Chang'anpu molybdenum deposit in Shulan, Jilin Province, of which the relative standard deviation (RSD) is less than 5%,showed that the experimental method can be used for the accurate determination of rare earth elements in molybdenite.
Keywords: inductively coupled plasma-mass spectrometry   molybdenite   rare earth elements   internal standard method  
收稿日期 2020-04-20 修回日期 2020-05-30 网络版发布日期  
DOI: 10.3969/j.issn.1004-5589.2020.03.025
基金项目:

科技部深地专项(2017YFC0601304)

通讯作者:
作者简介:
作者Email:

参考文献:
[1] 刘英俊,曹励明,李兆麟,等.元素地球化学[M].北京:科学出版社,1984:1-548. LIU Ying-jun, CAO Li-ming, LI Zhao-lin, et al. Element geochemistry[M].Beijing:Science Press, 1984:1-548.
[2] 黄凡,王登红,陈毓川,等. 中国内生钼矿床辉钼矿的微量元素特征研究[J]. 矿床地质,2014, 33(6):1193-1212. HUANG Fan,WANG Deng-hong,CHEN Yu-chuan, et al. Trace elements characteristics of molybdenites from endogenous molybdenum deposits in China[J]. Mineral Deposits, 2014, 33(6):1193-1212.
[3] 戴塔根,刘汉元.微量元素地球化学及其应用[M].长沙:中南工业大学出版社,1992:1-276. DAI Ta-gen, LIU Han-yuan. Geochemistry and application of trace element[M]. Changsha:Central South Industrial Universitial Press, 1992:1-276.
[4] 赵振华.微量元素地球化学原理[M].北京:科学出版社,1997:1-238. ZHAO Zhen-hua. Geochemical principle of trace elements[M]. Beijing:Sciences Press, 1997:1-238.
[5] 李昌年.火成岩微量元素岩石学[M].武汉:中国地质大学出版社,1992:1-195. LI Chang-nian. Trace elementary petrology of igneous rock[M]. Wuhan:China University of Geosciences Press,1992:1-195.
[6] Aleinikoff J N,Creaser A R,Lowers H A,et al. Multiple age components in individual molybdenite grains[J]. Chemical Geology,2012,300/301:55-60.
[7] Zhang L, Audetat A, Dolejs D.Solubility of molybdenite (MoS2) in aqueous fluids at 600~800℃, 200 Mpa:a synthetic fluid inclusion study[J]. Geochimica et Cosmochimica Acta,2012, 77:175-185.
[8] Hannah J L,Stein H J M E,Wieser J R,et al. Molybdenum isotope variations in molybdenite:vapor transport and rayleigh fractionation of Mo[J]. Geology,2007, 35(8):703-706.
[9] 徐林刚,Lehmann B.钼及钼同位素地球化学同位素体系测试技术及在地质中的应用[J]. 矿床地质,2011,30(1):103-124. XU Lin-gang, Lehmann B. Mo and Mo stable isotope geochemistry:isotope system, analytical technique and applications to geology[J]. Mineral Deposits, 2011, 30(1):103-124.
[10] 周涛发, 张乐骏, 袁峰, 等. 安徽铜陵新桥Cu-Au-S矿床黄铁矿微量元素LA-ICP-MS原位测定及其对矿床成因的制约[J]. 地学前缘, 2010, 17(2):306-319. ZHOU Tao-fa, ZHANG Le-jun, YUAN Feng, et al. LA-ICP-MS in situ trace element analysis of pyrite from the Xinqiao Cu-Au-S deposit in Tongling, Anhui, and its constraints on the ore genesis[J]. Earth Science Frontiers, 2010, 17(2):306-319.
[11] 屈文俊,王登红,朱云,等. 稀土稀有稀散元素现代仪器测试全新方法的建立[J]. 地质学报,2019,93(6):1514-1522. QU Wen-jun, WANG Deng-hong, ZHU Yun, et al. Establishment of new method for critical elements determination using modern analytical instruments[J]. Acta Geologica Sinica, 2019, 93(6):1514-1522.
[12] Ammann A A. Inductively coupled plasma mass spectrometry (ICP-MS):a versatile tool[J]. Journal of Mass Spectrometry, 2007, 42(4):419-427.
[13] Dulski P. Reference materials for geochemical studies:new analytical data by ICP-MS and critical discussion of reference values[J]. Geostandards and Geoanalytical Research, 2001, 25(1):87-125.
[14] Kalal H S, Panahi H A, Framarzi N,et al. New chelating resin for preconcentration and determination of molybdenum by inductive couple plasma atomic emission spectroscopy[J]. International Journal of Environmental Science and Technology, 2011(3):501-512.
[15] Zhao W, Zong K Q, Liu Y S, et al. An effective oxide interference correction on Sc and REE for routine analyses of geological samples by inductively coupled plasma-mass spectrometry[J]. Journal of Earth Science, 2019, 30(6):1302-1310.
[16] 李予晋,周燕,王铁夫,等.电感耦合等离子体质谱法测定砂金中稀土元素[J]. 黄金,2013,34(1):73-75. LI Yu-jin,ZHOU Yan,WANG Tie-fu,et al. Determination of rare earth element in gold placer by ICP-MS[J]. Gold,2013,34(1):73-75.
[17] Ciobanu C L,Cook N J,Kelson C R,et al. Trace element heterogeneity in molybdenite finger-prints stages of mineralization[J]. Chemical Geology, 2013, 347:175-189.
[18] 王风,程相恩,陈传伟. 电感耦合等离子体原子发射光谱法测定钼矿石中的钨钼[J]. 冶金分析,2014,34(6):53-56. WANG Feng,CHENG Xiang-en,CHEN Chuan-wei. Determination of tungsten and molybdenum in molybde-num ore by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis,2014,34(6):53-56.
[19] 王松君,常平,王璞珺,等. 电感耦合等离子体发射光谱法直接测定黄铜矿中多元素[J]. 岩矿测试,2004,23(3):228-230. WANG Song-jun,CHANG Ping,WANG Pu-jun,et al. Multi-element determination in chalcopyrite by inductively coupled plasma atomic emission spectrometry[J]. Rock and Mineral Analysis,2004, 23(3):228-230.
[20] 赵庆令,李清彩,高玉花.电感耦合等离子体发射光谱法测定钼矿石中钴铬铜钼镍铅锡钨钇锌[J].岩矿测试, 2009, 28(5):488-490. ZHAO Qing-ling, LI Qing-cai, GAO Yu-hua. Determination of Co, Cr, Cu, Me, Ni, Pb, Sn, W, Y and Zn in molybdenum ores by inductively coupled plasma-atomic emission specrornetry[J]. Rock and Mineral Analysis,2009,28(5):488-490.
[21] 李华玲,郑荣华,沈加林. 基体分离-高分辨电感耦合等离子体质谱法测定硫化物矿石中的稀土元素和钇[J]. 分析试验室,2014,33(10):1139-1142. LI Hua-ling,ZHENG Rong-hua,SHEN Jia-lin. Determination of Y and rare earth elements in sulfide ore by high resolution inductively coupled plasma mass spectrometry(HR-ICP-MS) after matrix separation[J]. Chinese Journal of Analysis Laboratory,2014,33(10):1139-1142.
[22] 宋晓红,冯旭,段伟亚,等. 电感耦合等离子体原子发射光谱法(ICP-AES)测定硫化物矿石中的14种常微量元素[J]. 中国无机分析化学,2014,4(2):36-38. SONG Xiao-hong,FENG Xu,DUAN Wei-ya, et al. Determination of 14 kinds of major and minor elements in sulfide ore by inductively coupled plasma atomic emission spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry,2014,4(2):36-38.
[23] 钱玉平,向兆,汪岸,等. 电感耦合等离子体质谱法测定多金属矿石中的稀土元素[J]. 资源环境与工程,2013,27(5):708-710. QIAN Yu-ping,XIANG Zhao,WANG An,et al. Inductively coupled plasma-mass spectrometric determination of rare earth elements in metal ore[J]. Resources Environment & Engineering,2013,27(5):708-710.
[24] 陈衍景,张成,李诺,等. 中国东北钼矿床地质[J]. 吉林大学学报(地球科学版),2012,42(5):1223-1268. CHEN Yan-jing, ZHANG Cheng, LI Nuo, et al. Geology of the Mo deposits in Northeast China[J]. Journal of Jilin University(Earth Science Edition),2012,42(5):1223-1268.
[25] Sun S S,McDonough W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[C]//Saunders A D,Norry M J. Magmatism in ocean basins. London:Geological Society of London Special Publications, 1989,42:313-345.
本刊中的类似文章
1.黄清华, 白雪峰, 王辉, 程宏岗, 朱政源.内蒙古林西地区中上二叠统界线碳酸盐岩微量元素和稀土元素地球化学特征及其地质意义[J]. 世界地质, 2019,38(3): 611-622
2.朱德全, 朱海波, 李宝龙, 李洪英, 李国涛.青海省都兰县热水铜钼矿床辉钼矿Re-Os测年及成矿意义[J]. 世界地质, 2018,37(4): 1004-1017
3.王克兵, 孟庆涛, 刘招君, 孙平昌, 徐银波, 白悦悦.柴北缘鱼卡地区中侏罗统石门沟组页岩段稀土元素地球化学特征与地质意义[J]. 世界地质, 2017,36(3): 862-870,879
4.刘大中, 郝宇杰, 杨群, 赵书跃, 任云生.大兴安岭中北段古中公路钼矿床形成时代与矿床成因[J]. 世界地质, 2017,36(2): 507-519
5.邵建波, 陈殿义, 潘月栋, 王洪涛.吉林省中东部季德屯及石马洞大型钼矿床辉钼矿 Re-Os 同位素年龄及地质意义[J]. 世界地质, 2016,35(3): 717-728
6.孙庆龙, 孙景贵, 赵克强, 唐臣, 张勇, 韩世炯, 杨帆.黑龙江鹿鸣斑岩型钼矿床 Re--Os 同位素定年及其地质意义[J]. 世界地质, 2014,33(2): 418-425
7.王孟, 王冬艳, 李月芬, 尚媛, 杨园园.吉林延边地区土壤稀土元素的活化特征及其影响因素[J]. 世界地质, 2012,31(1): 224-230
8.张博文, 孙丰月, 常国林, 陈静.辽宁朝阳东五家子金矿床成因类型讨论[J]. 世界地质, 2009,28(3): 297-333
9.陈博, 来雅文, 肖国拾, 徐长跃.煤矸石中稀土元素的提取富集工艺[J]. 世界地质, 2009,28(2): 257-260

Copyright by 世界地质