[an error occurred while processing this directive] ������� 2019, 38(3) 829-842,866 DOI:   10.3969/j.issn.1004-5589.2019.03.025  ISSN: 1004-5589 CN: 22-1111/P

����Ŀ¼ | ����Ŀ¼ | ������� | �߼�����                                                            [��ӡ��ҳ]   [�ر�]
����������
��չ����
������Ϣ
Supporting info
PDF(1489KB)
[HTMLȫ��]
�����[PDF]
�����
�����뷴��
�ѱ����Ƽ�������
�����ҵ����
�������ù�����
����
Email Alert
���·���
���������Ϣ
���Ĺؼ����������
�Ÿ߳�
��ظ�ԭ
������
�ȶ�ͬλ��
��ֲ�ﻯʯ
���������������
��ΰ
�����
������
Ҧ����
��ӯ
PubMed
Article by Feng W
Article by Yang S
Article by Huang R
Article by Yao L
Article by Feng Y
��ظ�ԭ�Ÿ߳��ؽ��о���״
��ΰ, �����, ������, Ҧ����, ��ӯ
���ݴ�ѧ���ʿ�ѧ������ԴѧԺ, ���� 730000
ժҪ�� ��ظ�ԭ�Ÿ̶߳������о��ر�̧�������������ѧ�Լ�����֮���ϵ��Ŧ��������̽�ָ�ԭ¡����ʷ��¡�����ƾ�����Ҫ���á����ܽ�20�����������й���ظ�ԭ�Ÿ̶߳����о��϶ࡢ�漰�㷺��������׵���ֲ��߷ۻ�ʯ�Լ�����̼����ͬλ�صȣ�ȱ���Բ�ͬ�о�������Ӧ�÷�Χ��Ӧ��ʱӦע���������ϵͳ���ܽ�����ۣ�����ͬһ����Ӧ�ò�ͬ�Ÿ߳�ָ��ó���ͬ�ĺ��θ߶ȡ�����ͨ���ܽ��й���ظ�ԭ�Ÿ߳��о��������о��������й��ɣ�������о��д��ڵ�����������ۣ����ص�����������ؿ�Ÿ߳��о��������Ϊ�����ؿ�Ÿ߳���������-�������������нϴ���������
�ؼ����� �Ÿ߳�   ��ظ�ԭ   ������   �ȶ�ͬλ��   ��ֲ�ﻯʯ  
Present situation on paleoelevation reconstruction of Tibetan Plateau
FENG Wei, YANG Shu-fen, HUANG Ruo-han, YAO Li-jie, FENG Ying
College of Geological Sciences and Mineral Resources, Lanzhou University, Lanzhou 730000, China
Abstract: Quantitative reconstruction on the paleoelevation of Tibetan Plateau is linked to topographic uplift, deep earth geodynamics and climate, which is important for understanding the uplift history and mechanism of the Tibetan Plateau. Although many results on quantitative paleoelevation reconstructions of the Tibetan Plateau have been published over the last two decades, including vertebrate, plant, palynological fossils as well as oxygen, carbon, hydrogen isotopes, systematic discussion and conclusion on research methods, application range and conditions are limited. As a result, different conclusions have been obtained in the same area using different methods. In this paper, the authors review the paleoelevation reconstructions of the Tibetan Plateau, classify the research methods, discuss the existing problems and analyze the paleoelevation data of Lhasa terrane in detail. The existing paleoelevation data of Lhasa terrane indicates that the landform of Lhasa terrane during Late Oligocene-Early Miocene may have had high-relief topography.
Keywords: paleoelevation   Tibetan Plateau   Cenozoic   stable isotope   paleontology  
�ո����� 2018-12-21 �޻����� 2019-03-27 ����淢������  
DOI: 10.3969/j.issn.1004-5589.2019.03.025
������Ŀ:

���ĵõ��ڶ�����ظ�ԭ�ۺϿ�ѧ�����о���Ŀ��2019QZKK0707�����й���ѧԺս�����ȵ��Ƽ�ר�XDA2007020102���͹�����Ȼ��ѧ������Ŀ��41872098������������

ͨѶ����:
���߼��:
����Email:

�ο����ף�
[1] Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan orogeny[J].Annual Review of Earth and Planetary Sciences, 2000, 28(1):211-280.
[2] Wang C S, Dai J G, Zhao X X, et al. Outward-growth of the Tibetan Plateau during the Cenozoic:a review[J].Tectonophysics, 2014, 621:1-43.
[3] Deng T, Ding L. Paleoaltimetry reconstructions of the Tibetan Plateau:progress and contradictions[J].Geosciences, 2015, 2(4):417-437.
[4] Molnar P, England P. Late Cenozoic uplift of mountain ranges and global climate change:chicken or egg?[J].Nature, 1990, 346(6279):29-34.
[5] Rowley D B, Pierrehumbert R T, Currie B S. A new approach to stable isotope-based paleoaltimetry:implications for paleoaltimetry and paleohypsometry of the High Himalaya since the Late Miocene[J].Earth and Planetary Science Letters, 2001, 188(1/2):253-268.
[6] Ding L, Xu Q, Yue Y H, et al. The Andean-type Gangdese Mountains:paleoelevation record from the Paleocene-Eocene Linzhou Basin[J].Earth and Planetary Science Letters, 2014, 392:250-264.
[7] ����, �վ���, �����. ϣ�İ�����ɽ�ݻ�ʯ��ķ��ּ�����ֲ��ѧ�͵���ѧ�ϵ�����[J].ֲ��ѧ��, 1973, 15(1):104-114. XU Ren, TAO Jun-rong, SUN Xiang-jun. On the discovery of a Quercus Semicarpifolia bed in Mount Shisha Pangma and its significance in botany and geology[J].Acta Botanica Sinica, 1973, 15(1):104-114.
[8] Li J J, Fang X M, Song C H, et al. Late Miocene-Quaternary rapid stepwise uplift of the NE Tibetan Plateau and its effects on climatic and environmental changes[J].Quaternary Research, 2014, 81(3):400-423.
[9] Harrison T M, Copeland P, Kidd W S F, et al. Raising Tibet[J].Science, 1992, 255(27):1663-1670.
[10] Coleman M, Hodges K. Evidence for Tibetan Plateau uplift before 14 Myr ago from a new minimum age for east-west extension[J].Nature, 1995, 374(6517):49-52.
[11] Li Y L, Wang C S, Dai J G, et al. Propagation of the deformation and growth of the Tibetan-Himalayan orogen:a review[J].Earth-Science Reviews, 2015, 143:36-61.
[12] Garzione C N, Quade J, Decelles P G, et al. Predicting paleoelevation of Tibet and the Himalaya from ��18O vs. altitude gradients in meteoric water across the Nepal Himalaya[J].Earth and Planetary Science Letters, 2000, 183(1/2):215-229.
[13] Rowley D B, Currie B S. Palaeo-altimetry of the Late Eocene to Miocene Lunpola Basin, central Tibet[J].Nature, 2006, 439(9):677-681.
[14] Quade J, Breecker D O, Daeron M, et al. The paleoaltimetry of Tibet:an isotopic perspective[J].American Journal of Science, 2011, 311(2):77-115.
[15] Xu Q, Ding L, Zhang L Y, et al. Paleogene high elevations in the Qiangtang terrane, central Tibetan Plateau[J].Earth and Planetary Science Letters, 2013, 362:31-42.
[16] Xu Q, Ding L, Spicer R A, et al. Stable isotopes reveal southward growth of the Himalayan-Tibetan Plateau since the Paleocene[J].Gondwana Research, 2017, 54:50-61.
[17] Hoke G D, Zeng J L, Hren M T, et al. Stable isotopes reveal high southeast Tibetan Plateau margin since the Paleogene[J].Earth and Planetary Science Letters, 2014, 394:270-278.
[18] Currie B S, Polissar P J, Rowley D B, et al. Multiproxy paleoaltimetry of the Late Oligocene-Pliocene Oiyug Basin, southern Tibet[J].American Journal of Science, 2016, 316(5):401-436.
[19] Ingalls M, Rowley D, Olack G, et al. Paleocene to Pliocene low-latitude, high-elevation basins of southern Tibet:implications for tectonic models of India-Asia collision, Cenozoic climate, and geochemical weathering[J].Geological Society of America Bulletin, 2018, 130(1/2):307-330.
[20] Deng L H, Jia G D. High-relief topography of the Nima Basin in central Tibetan Plateau during the Mid-Cenozoic time[J].Chemical Geology, 2018, 493:199-209.
[21] Spicer R A, Harris N B W, Widdowson M, et al. Constant elevation of southern Tibet over the past 15 million years[J].Nature, 2003, 421(6923):622-624.
[22] ����, ������, ����, ��. �ر���������ض����鲸�鶯�ﻯʯ��ʱ���͹Ÿ߶ȵ�ָʾ[J].��ѧͨ��, 2011, 56(34):2873-2880. DENG Tao, WANG Shi-qi, XIE Guang-pu, et al. A mammalian fossil from the Dingqing Formation in the Lunpola Basin, northern Tibet, and its relevance to age and paleo-altimetry[J]. Chinese Science Bulletin, 2011, 56(34):2873-2880.
[23] Sun J M, Xu Q H, Liu W M, et al. Palynological evidence for the Latest Oligocene-Early Miocene paleoelevation estimate in the Lunpola Basin, central Tibet[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 399:21-30.
[24] Wu F X, Miao D S, Chang M M, et al. Fossil climbing perch and associated plant megafossils indicate a warm and wet central Tibet during the Late Oligocene[J].Scientific Reports, 2017, 7(1):878.
[25] Ding L, Spicer R A, Yang J, et al. Quantifying the rise of the Himalaya orogen and implications for the South Asian monsoon[J].Geology, 2017, 45(3):215-218.
[26] Huntington K W, Saylor J, Quade J, et al. High Late Miocene-Pliocene elevation of the Zhada Basin, southwestern Tibetan Plateau, from carbonate clumped isotope thermometry[J].Geological Society of America Bulletin, 2015, 127(1/2):181-199.
[27] Wang C S, Zhao X X, Liu Z F, et al. Constraints on the early uplift history of the Tibetan Plateau[J].Proceedings of the National Academy of Sciences, 2008, 105(13):4987-4992.
[28] ������, ��ǿ,����. ����̧��:��ظ�ԭ�������Ÿ߶ȱ仯��ʷ[J].�й���ѧ(D��), 2017, 47(1):40-56. LIU Xiao-hui, XU Qiang, DING Lin. Differential surface uplift:Cenozoic paleoelevation history of the Tibetan Plateau[J].Science China(Ser.D), 2017, 47(1):40-56.
[29] Polissar P J, Freeman K H, Rowley D B, et al. Paleoaltimetry of the Tibetan Plateau from D/H ratios of lipid biomarkers[J].Earth and Planetary Science Letters, 2009, 287(1/2):64-76.
[30] Jia G D, Bai Y, Ma Y J, et al. Paleoelevation of Tibetan Lunpola Basin in the Oligocene-Miocene transition estimated from leaf wax lipid dual isotopes[J].Global and Planetary Change, 2015, 126:14-22.
[31] ������, �ſ���, ���Ƕ�. ��ظ�ԭ�Ÿ̶߳����ָ��о���չ[J].�����ѧ��չ, 2015, 30(3):334-345. JIANG Gao-lei, ZHANG Ke-xin, XU Ya-dong. Research progress of quantitative paleoelevation reconstruction of Tibetan Plateau[J].Advances in Earth Science, 2015, 30(3):334-345.
[32] Saylor J E, Quade J, Dettman D L, et al. The Late Miocene through present paleoelevation history of southwestern Tibet[J].American Journal of Science, 2009, 309(1):1-42.
[33] Murphy M A, Saylor J E, Ding L. Late Miocene topographic inversion in Southwest Tibet based on integrated paleoelevation reconstructions and structural history[J].Earth and Planetary Science Letters, 2009, 282(1/4):1-9.
[34] Deng T, Li Q, Tseng Z J, et al. Locomotive implication of a Pliocene three-toed horse skeleton from Tibet and its paleo-altimetry significance[J].Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(19):7374-7378.
[35] Wang Y, Xu Y F, Khawaja S, et al. Diet and environment of a Mid-Pliocene fauna from southwestern Himalaya:paleo-elevation implications[J].Earth and Planetary Science Letters, 2013, 376:43-53.
[36] Wu F L, Herrmann M, Fang X M. Early Pliocene paleo-altimetry of the Zanda Basin indicated by a sporopollen record[J].Palaeogeography, Palaeoclimatology, Palaeoecology,2014, 412:261-268.
[37] Wang Y, Deng T, Biasatti D. Ancient diets indicate significant uplift of southern Tibet after ca.7 Ma[J].Geology, 2006, 34(4):309-312.
[38] ��ǿ, ����, ������, ��. ��ظ�ԭ�ִ�ʳ�ݶ������ݷ������ȶ�ͬλ���������Ÿ߶��ؽ�����[J].��ѧͨ��, 2009, 54(15):2160-2168. XU Qiang, DING Lin, ZHANG Li-yun, et al. Stable isotopes of modern herbivore tooth enamel in the Tibetan Plateau:implications for paleoelevation reconstructions[J].Chinese Science Bulletin, 2009, 54(15):2160-2168.
[39] ������, ������,�Ŀ�. ������ɽ����ֲ�ﻯʯ�Ʋ���ظ�ԭ��¡��[J].��ѧͨ��, 2007, 52(3):249-257. ZHOU Zhe-kun, YANG Qing-song, XIA Ke. Fossils of Quercus sect.Heterobalanus can help explain the uplift of the Himalayas[J].Chinese Science Bulletin, 2007, 52(3):249-257.
[40] Gebelin A, Mulch A, Teyssier C, et al. The Miocene elevation of Mount Everest[J].Geology, 2013, 41(7):799-802.
[41] Decelles P G, Kapp P, Quade J, et al. Oligocene-Miocene Kailas Basin, southwestern Tibet:record of postcollisional upper-plate extension in the Indus-Yarlung suture zone[J].Geological Society of America Bulletin, 2011, 123(7):1337-1362.
[42] Currie B S, Rowley D B, Tabor N J. Middle Miocene paleoaltimetry of southern Tibet:implications for the role of mantle thickening and delamination in the Himalayan orogeny[J]. Geology, 2005, 33(3):181-184.
[43] Khan M A, Spicer R A, Bera S, et al. Miocene to Pleistocene floras and climate of the eastern Himalayan Siwaliks, and new palaeoelevation estimates for the Namling-Oiyug Basin, Tibet[J].Global and Planetary Change, 2014, 113:1-10.
[44] Decelles P G, Quade J, Kapp P, et al. High and dry in central Tibet during the Late Oligocene[J].Earth and Planetary Science Letters, 2007, 253(3/4):389-401.
[45] Wang N, Wu F X. New Oligocene cyprinid in the central Tibetan Plateau documents the pre-uplift tropical lowlands[J].Ichthyological Research, 2015, 62(3):274-285.
[46] Wei Y, Zhang K X, Garzione C N, et al. Low palaeoelevation of the northern Lhasa terrane during Late Eocene:fossil foraminifera and stable isotope evidence from the Gerze Basin[J].Scientific Reports, 2016, 6(1):27508.
[47] Xu Q, Ding L, Hetzel R, et al. Low elevation of the northern Lhasa terrane in the Eocene:implications for relief development in South Tibet[J].Terra Nova, 2015, 27(6):458-466.
[48] Cyr A J, Currie B S, Rowley D B. Geochemical evaluation of Fenghuoshan Group lacustrine carbonates, north-central Tibet:implications for the paleoaltimetry of the Eocene Tibetan Plateau[J].The Journal of Geology, 2005, 113(5):517-533.
[49] Miao Y F, Wu F L, Chang H, et al. A Late-Eocene palynological record from the Hoh Xil Basin, northern Tibetan Plateau, and its implications for stratigraphic age, paleoclimate and paleoelevation[J].Gondwana Research, 2016, 31:241-252.
[50] ���人, ��ѷ, Ҷ��ʢ, ��. ���ݺ������̼��ͬλ�ع�����ظ�ԭ�ź��θ߶�[J].����ѧ��,2007, 81(9):1277-1288. WU Zhen-han, ZHAO Xun, YE Pei-sheng, et al. Paleo-elevation of the Tibetan Plateau inferred from carbon and oxygen isotopes of lacustrine deposits[J].Acta Geologica Sinica, 2007, 81(9):1277-1288.
[51] Sun B, Wang Y F, Li C S, et al. Early Miocene elevation in northern Tibet estimated by palaeobotanical evidence[J].Scientific Reports, 2015, 5(1):10379.
[52] Wang Y, Wang X M, Xu Y F, et al. Stable isotopes in fossil mammals, fish and shells from Kunlun Pass Basin, Tibetan Plateau:paleo-climatic and paleo-elevation implications[J].Earth and Planetary Science Letters, 2008, 270(1/2):73-85.
[53] Zhuang G S, Brandom M T, Pagani M, et al. Leaf wax stable isotopes from northern Tibetan Plateau:implications for uplift and climate since 15 Ma[J].Earth and Planetary Science Letters, 2014, 390:186-198.
[54] Li S Y, Currie B S, Rowley D B, et al. Cenozoic paleoaltimetry of the SE margin of the Tibetan Plateau:constraints on the tectonic evolution of the region[J].Earth and Planetary Science Letters, 2015, 432:415-424.
[55] Tang M Y, Zeng J L, Hoke G D, et al. Paleoelevation reconstruction of the Paleocene-Eocene Gonjo Basin, SE-central Tibet[J].Tectonophysics, 2017(712/713):170-181.
[56] Gourbet L, Leloup P H, Paquette J L, et al. Reappraisal of the Jianchuan Cenozoic basin stratigraphy and its implications on the SE Tibetan Plateau evolution[J].Tectonophysics, 2017(700/701):162-179.
[57] Wu J, Zhang K X, Xu Y D, et al. Paleoelevations in the Jianchuan Basin of the southeastern Tibetan Plateau based on stable isotope and pollen grain analyses[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 510:93-108.
[58] He H Y, Sun J M, Li Q L, et al. New age determination of the Cenozoic Lunpola Basin, central Tibet[J].Geological Magazine, 2011, 149(1):141-145.
[59] ������. ��ظ�ԭ�в�����������������ݻ���Ÿ߶ȱ仯:��ʿѧλ����[D].����:�й���ѧԺ��ѧ, 2018. LIU Xiao-hui. Evolution and paleoelevation history of the Cenozoic Lunpola Basin in the central Tibetan Plateau:doctor's degree thesis[D].Beijing:University of Chinese Academy of Sciences, 2018.
[60] Song X Y, Spicer R A, Yang J, et al. Pollen evidence for an Eocene to Miocene elevation of central southern Tibet predating the rise of the High Himalaya[J].Palaeogeography, Palaeoclimatology, Paaleoecology, 2010, 297(1):159-168.
[61] Quade J, Garzione C, Eiler J. Paleoelevation reconstruction using pedogenic carbonates[J].Reviews in Mineralogy and Geochemistry, 2007, 66(1):53-87.
[62] ������, ���ľ�, ������. ���������ҹŸ̼߳�:ԭ��������Ӧ��[J].����ͨ��, 2010, 29(2/3):268-277. DAI Jin-gen, DING Wen-jun, WANG Cheng-shan. Vesicular basalt paleoaltimeter:principles, methods and its applications[J].Geological Bulletin of China, 2010, 29(2/3):268-277.
[63] Sahagian D L, Proussevitch A A, Carlson W D. Analysis of vesicular basalts and lava emplacement processes for application as a paleobarometer/paleoaltimeter[J].The Journal of Geology, 2002, 110(6):671-685.
[64] Lal D. Cosmic ray labeling of erosion surfaces:in situ nuclide production rates and erosion models[J].Earth and Planetary Science Letters, 1991, 104(Suppl.2/4):424-439.
[65] Brook E J, Brown E T, Kurz M D, et al. Constraints on age, erosion, and uplift of Neogene glacial deposits in the Transantarctic Mountains determined from in situ cosmogenic 10Be and 26Al[J].Geology, 1995, 23(12):1063-1066.
[66] ����. �����������ڵ����ѧ�е�Ӧ��[J].��ѧǰԵ, 2002, 9(3):41-48. KONG Ping. Applications of cosmogenic nuclides in the earth sciences[J].Earth Science Frontiers, 2002, 9(3):41-48.
[67] ����, ��ǿ, ������, ��. ��ظ�ԭ������ͬλ������仯������߶�Ԥ��ģ�ͽ���[J].���ļ��о�, 2009, 29(1):1-12. DING Lin, XU Qiang, ZHANG Li-yun, et al. Regional variation of river water oxygen isotope and empirical elevation prediction models in Tibetan Plateau[J].Quaternary Sciences, 2009, 29(1):1-12.
[68] Hou S G, Delmotte V M, Qin D H, et al. Modern precipitation stable isotope vs.elevation gradients in the High Himalaya. Comment on "a new approach to stable isotope-based paleoaltimetry:implications for paleoaltimetry and paleohypsometry of the High Himalaya since the Late Miocene" by David B. Rowley et al.[Earth Planet. Sci. Lett. 188(2001) 253-268] [J].Earth and Planetary Science Letters, 2003, 209(3/4):395-399.
[69] Talbot M R. A review of the paleohydrological interpretation of carbon and oxygen isotopic-ratios in primary lacustrine carbonates[J].Chemical Geology, 1990, 80(4):261-279.
[70] Kim S T, O'neil J R. Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates[J].Geochimica et Cosmochimica Acta, 1997, 61(16):3461-3475.
[71] ������, ������, ��ӭ��, ��. Ӱ���й�������ˮ�ȶ�ͬλ����ɵ���Ҫ���ط���[J].�����ѧ����, 1997(4):14-18. LIU Jin-da, LIU En-kai, ZHAO Ying-chang, et al. Analysis of the chief factors influencing the stability isotope composition of China atmospheric precipitation[J].Investigation Science and Technology, 1997(4):14-18.
[72] ����ƽ, Ҧ̴��. ȫ��ˮ����ͬλ�ر��ʵķֲ��ص�[J].��������, 1994, 16(3):202-210. ZHANG Xin-ping, YAO Tan-dong. World spatial characteristics of oxygen isotope ratio in precipitation[J].Journal of Glaciology and Geocryology, 1994, 16(3):202-210.
[73] ������,��ï��,���ǻ�,��. ��ɽ"���������ݹŸ̼߳�"�����������ڳ��ɽ����Ӧ��[J].��ʯѧ��, 2011, 27(10):2863-2872. GUO Zheng-fu, ZHANG Mao-liang, CHENG Zhi-hui, et al. A link of measurements of lava flows to paleoelevation estimations and its application in Tengchong volcanic eruptive field in Yunnan Province (SW China)[J].Acta Petrologica Sinica, 2011, 27(10):2863-2872.
[74] Sahagian D L, Proussevitch A A. Paleoelevation measurement on the basis of vesicular basalts[J].Reviews in Mineralogy and Geochemistry,2007, 66(1):195-213.
[75] �޾���,�ۺ�÷,�ų���. ��ɽ���������о������뿱̽��������[J].ʯ��ѧ��, 2003, 24(1):31-38. LUO Jing-lan, SHAO Hong-mei, ZHANG Cheng-li. Summary of research methods and exploration technologies for volcanic reservoirs[J].Acta Petrolei Sinica, 2003, 24(1):31-38.
[76] Ѧ�¿�,������,����,��. ׼����������ĵ���٪��ϵ����������������϶�ݻ�[J].�½�ʯ�͵���, 2007, 28(4):428-431. XUE Xin-ke, HUANG Zhi-jiu, LI Zhen-hua, et al. Diagenesis and porosity evolution of Jurassic reservoir in Wu-Xia area, Junggar Basin[J].Xinjiang Petroleum Geology, 2007, 28(4):428-431.
[77] Riihimaki C A, Libarkin J C. Terrestrial cosmogenic nuclides as paleoaltimetric proxies[J]. Reviews in Mineralogy and Geochemistry, 2007,66(1):269-278.
[78] Gosse J C, Phillips F M. Terrestrial in situ cosmogenic nuclides:theory and applications[J]. Quaternary Science Reviews, 2001, 20(14):1475-1560.
[79] Stone J O. Air pressure and cosmogenic isotope production[J].Journal of Geophysical Reaearch Atmospheres, 2000, 105(10):23753-23759.
[80] Kong P, Na C G, Fink D, et al. Erosion in northwest Tibet from in-situ-produced cosmogenic Be-10 and Al-26 in bedrock[J].Earth Surface Processes and Landforms, 2007, 32(1):116-125.
[81] Tian L D, Delmotte M, Stievenard V, et al. Tibetan Plateau summer monsoon northward extent revealed by measurements of water stable isotopes[J].Journal of Geophysical Research, 2001, 106(22):28081-28088.
[82] Li L, Garzione C N. Spatial distribution and controlling factors of stable isotopes in meteoric waters on the Tibetan Plateau:implications for paleoelevation reconstruction[J].Earth and Planetary Science Letters, 2017, 460:302-314.
�������������
1���¼ѻ�, �ƽ�, ������, Sorokin A A, ����.����˹Զ��½�ڸ�þ��ɽ�ҵķ��ּ����������[J]. �������, 2019,38(3): 589-597
2���׷���, �ᄚ��, ������, ������, ����.�����»���������dz����Һ��󴲳ɿ�����������о�[J]. �������, 2019,38(2): 339-353
3������, �컪, ������.С�˰��������������������Ϲ�ϵ[J]. �������, 2018,37(3): 804-812,825
4����ǿ, ������, ���в�, ������, �μ�Ҷ, ��ǿ, �ִ�, ̷˼Զ.׼���������������ɰ�����˿�ز�������������Զ��Ԥ��[J]. �������, 2018,37(2): 447-457
5��Ȩ����, ������, ��ѩ��, ������, ������.���ɹ�ά��˹��Ǧп������������������󴲳����о�[J]. �������, 2017,36(1): 105-117
6��������, �����, ���ʤ, ��Ŵ�, ս�˳�, ������.���ɹ���ţ����ɶ�����Ǧп�󴲳ɿ��������������[J]. �������, 2016,35(2): 450-469
7������, ��豬B, �⾰��, ������, ��Ԫǿ, ����.ݺ�躣���ǰ��������������[J]. �������, 2014,33(3): 511-523
8�������, ��ѧԴ, �ں��, ���ʤ, ��̺�, ½����, Ѧ����, ����.���ɹŽ𳧹�����󴲳ɿ������������ȶ�ͬλ���о�[J]. �������, 2014,33(3): 591-602
9������, �ܺ�ͼ, ������, ������, ����, �ֺ���, ������, �ν���, ��ܰӨ.����ʡ�������������к졢����ʯ���ҿ���[J]. �������, 2014,33(3): 609-614
10��������, ������, ����, �¹��.���ֶ����С���������طdz���������Դ��DZ������[J]. �������, 2013,32(1): 77-83
11��������, ��Ż�, �����, ������, �Һ�ϼ.�½�����̩��������—��ľ���ص�������󻯼�����[J]. �������, 2012,31(1): 100-112
12���ں��, �ǹ���, ����, ��ռ��.���ڵ�������������ɽ������������������[J]. �������, 2009,28(4): 485-490
13���ż̳�, ������, ����, ��Զ��, ����, ����.��30������������ʪ�ر仯��������̽��[J]. �������, 2009,28(3): 371-378
14���Ų���, �����, ������, �¾�.��������������ӽ�󴲳�����������[J]. �������, 2009,28(3): 297-333

Copyright by �������