Global Geology 2019, 22(3) 159-166 DOI:   10.3969/j.issn.1673-9736.2019.03.03  ISSN: 1673-9736 CN: 22-1371/P

Current Issue | Archive | Search                                                            [Print]   [Close]
Articles
Information and Service
This Article
Supporting info
PDF(889KB)
[HTML]
Reference
Service and feedback
Email this article to a colleague
Add to Bookshelf
Add to Citation Manager
Cite This Article
Email Alert
Keywords
isolation forest model
geochemical anomaly
ROC curve
Youden index
Authors
PubMed

Identification model of geochemical anomaly based on isolation forest algorithm

SHANG Yinmin, LU Laijun, KANG Qiankun

College of Earth Sciences, Jilin University, Changchun 130061, China

Abstract

The methods for geochemical anomaly detection are usually based on statistical models, and it needs to assume that the sample population satisfies a specific distribution, which may reduce the performance of geochemical anomaly detection. In this paper, the isolation forest model is used to detect geochemical anomalies and it does not require geochemical data to satisfy a particular distribution. By constructing a tree to traverse the average path length of all data, anomaly scores are used to characterize the anomaly and background fields, and the optimal threshold is selected to identify geochemical anomalies. Taking 1:200 000 geochemical exploration data of Fusong area in Jilin Province, NE China as an example, Fe2O3 and Pb were selected as the indicator elements to identify geochemical anomalies, and the results were compared with traditional statistical methods. The results show that the isolation forest model can effectively identify univariate geochemical anomalies, and the identified anomalies results have significant spatial correlation with known mine locations. Moreover, it can identify both high value anomalies and weak anomalies.

Keywords isolation forest model   geochemical anomaly   ROC curve   Youden index  
Received 2019-05-25 Revised 2019-06-30 Online:  
DOI: 10.3969/j.issn.1673-9736.2019.03.03
Fund:Supported by National Key Basic Research Development Planning Project (No.2015CB453005).
Corresponding Authors: LU Laijun
Email: lulj1956@163.com
About author:

References:
Similar articles
1.WU Wei, CHEN Yongliang.Application of isolation forest to extract multivariate anomalies from geochemical exploration data[J]. Global Geology, 2018,21(1): 36-47

Copyright by Global Geology