Global Geology 2016, 19(3) 125-132 DOI:     ISSN: 1673-9736 CN: 22-1371/P

Current Issue | Archive | Search                                                            [Print]   [Close]
����
Information and Service
This Article
Supporting info
PDF(1734KB)
[HTML]
Reference
Service and feedback
Email this article to a colleague
Add to Bookshelf
Add to Citation Manager
Cite This Article
Email Alert
Keywords
Nepa- Botuoba Sub- basin
heavy oil
outside source accumulation
favorable accumulation zone
Authors
XU Jianhua
SHAN Xuanlong
DU Shang
HE Wentong and LIANG Ye
PubMed
Article by XU Jianhua
Article by SHAN Xuanlong
Article by DU Shang
Article by HE Wentong and LIANG Ye

Accumulation conditions of outside source heavy oil in Nepa- Botuoba Sub- basin����ussia and prediction of distribution

XU Jianhua, SHAN Xuanlong, DU Shang, HE Wentong and LIANG Ye

College of Earth Sciences��Jilin University��Changchun 130061��China

Abstract��

In terms of tectonic evolution and petroleum geological conditions of the Nepa- Botuoba Sub- basin and its adjacent sub- basins�� the accumulation conditions of the heavy oil were analyzed�� The studied area had plenty of oil and gas accumulation��but there were no developed source rocks�� It is a typical outside source accumula- tion��whose origins from thick high- quality source rock deposited in the adjacent sub- basins�� The shallow layer has favorable heavy oil reservoir conditions and poor sealing conditions��which benefits the thickening of hydro- carbon�� The multi- periods of structural compression not only uplifted the studied area drastically��but also crea- ted a series of fault zones and large- scale slope belt�� The structural compression also provided channel and suffi- cient power for migration of hydrocarbon to shallow layers�� Based on these conditions��the favorable accumula- tion zone of heavy oil was predicted��which provided direction for heavy oil exploration in Nepa- Botuoba Sub- basin��

Keywords�� Nepa- Botuoba Sub- basin   heavy oil   outside source accumulation   favorable accumulation zone  
Received  Revised  Online:  
DOI:
Fund:
Corresponding Authors:
Email:
About author:

References��
Similar articles
1��LI Yong, REN Yunsheng, HAO Yujie, YANG Qun.Ore-forming fluid characteristics and genesis of vein-type lead-zinc mineralization of Xiaohongshilazi deposit,Jilin Province, China[J]. Global Geology, 2017,20(4): 191-199
2��WANG Yang, SUN Fengyue, GAO Hongchang, HE Shuyue, QIAN Ye, XU Chenghan.Geochronology and geochemistry of Hutouya monzonitic granite of Qimantage, Qinghai[J]. Global Geology, 2017,20(4): 208-216
3��LIU Hang, ZHU Jianwei, CHEN Jingwu.Application of sedimentary pyrite in paleo-environment:a case study of Meihe Formation[J]. Global Geology, 2017,20(4): 229-236
4��WANG Zhongcheng, LU Xiaoping, ZHAO Juan, TAO Junyu, CHEN Mingjian.Dating for Jifanggou metamorphic complex in central Jilin and its tectonic implications[J]. Global Geology, 2017,20(4): 200-207
5��JING Siliang, LU Qi, WANG Dian.Seismic inversion modeling method for faulted basins:a case study of Liaohe Beach in Bijialing region[J]. Global Geology, 2017,20(4): 253-258
6��LIU Caihua, QU Xin, FENG Xuan, TIAN You, LIU Yang, QIAO Hanqing, WANG Shiyu.Application of high-frequency magnetotelluric method in porphyry copper deposit exploration:a case study of Duobaoshan deposit area[J]. Global Geology, 2017,20(4): 246-252
7��YIN Yue, WANG Li, SUN Xia, JIANG Hefang, LI Liang.U-Pb geochronology, geochemistry and tectonic implications ofdiorite from Nangnimsan of Mehe in northern Da Hinggan Mountains[J]. Global Geology, 2017,20(4): 217-228
8��WU You, SHAN Xuanlong, YI Jian.Volcanic edifices of Yingcheng Formation in Changling fault depression of Songliao Basin and their seismic identification[J]. Global Geology, 2017,20(4): 237-245
9��Nareerat Boonchai, Marc Philippe, Paul A. Carling, Lyubov Meshkova.A preliminary investigation of fossil wood from Lower Mekong Basin of Southeast Asia[J]. Global Geology, 2017,20(3): 131-143
10��GONG Qiming, HAN Liguo, ZHOU Jinju.Elastic reverse time migration based on vector wavefield decomposition[J]. Global Geology, 2017,20(3): 184-190
11��YUAN Zhiyi, ZENG Zhaofa, JIANG Dandan, HUAI Nan, ZHOU Fei.Multi-component joint inversion of gravity gradient based on fast forward calculation[J]. Global Geology, 2017,20(3): 176-183
12��ZHANG Junyi, LI Bile, ZHAO Guoquan, NING Chuanqi, SUN Jing, WANG Guozhi.Geochemistry, U-Pb, Hf isotopic characteristics and geological significance of Zhalaxiageyong trachydacite in Tuotuohe area, Qinghai[J]. Global Geology, 2017,20(3): 153-163
13��LEI Honglei, ZHANG Yanjun, WU Fan, HU Zhongjun, YU Ziwang, ZHU Chengcheng, LÜ Tianqi.Parallel numerical simulation on CO2 geologic storage in Ordos Basin, China[J]. Global Geology, 2017,20(3): 164-169
14��Seyed Ahmad Babazadeh, Seyedeh Malihe Hamidzadeh.Biostratigraphy of Asmari Formation in Ghare Agha seyed of Farsan region, Chaharmahale Bakhtiari Province, Iran[J]. Global Geology, 2017,20(3): 144-152
15��YANG Guang, FAN Yeyu, LIU Changli.Gas accumulation mechanism in Denglouku Formation of Changling fault depression, southern Songliao Basin, China[J]. Global Geology, 2017,20(3): 170-175

Copyright by Global Geology