Global Geology 2016, 19(1) 13-25 DOI: ISSN: 1673-9736 CN: 22-1371/P | |||||||||||||||||||||||||||||||||||||||||||||||||||
Current Issue | Archive | Search [Print] [Close] | |||||||||||||||||||||||||||||||||||||||||||||||||||
���� |
| ||||||||||||||||||||||||||||||||||||||||||||||||||
Distributive characteristics of reservoirs and exploration potential associated with intrusive rocks of Yingcheng Formation in Yingtai rift depression��NE China | |||||||||||||||||||||||||||||||||||||||||||||||||||
TANG Huafeng , KONG Tan, ZHAO Hui and GAO Youfeng | |||||||||||||||||||||||||||||||||||||||||||||||||||
1�� College of Earth Sciences��Jilin University��Changchun 130026��China; 2�� Exploration and Development ��esearch Institute of Jilin Oilfield��Songyuan 138000��Jilin��China; 3�� ��esearch Center of Palaeontology �� Stratigraphy of Jilin University��Changchun 130061��China | |||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract��
Petroleum geologists have paid great attentions to the volcanic reservoirs of Songliao Basin in NE Chi- na�� There are plenty of subvolcanic rocks in the Songliao Basin accompanying the Early Cretaceous Yingcheng Formation�� The logging data show the good reservoir potential of these intrusive rocks but the distribution char- acteristics and formation mechanisms of these reservoirs are not clearly understood�� Based on the previous stud- ies by using coring��cuts and logging data of Yingtai rift depression�� the reservoirs' characteristics of intrusive rocks are presented�� There are two types of intrusive rocks namely the syenodiorite- porphyrite and diabase which occur as laccolith and/or sill��both having the characteristics of low gamma and high density with little primary porosity and permeability�� The prevalent reservoir porosity is the secondary porosity��such as spongy/cavernous pore��tectonic fracture�� The laboratory data of porosity of diabase can reach 6.7%��but the permeability is less than 0�� 6 ×10-3 μm 2 ��median pressure is high��indicating that the pore throat of this kind reservoir is small�� The maximum logging porosity is about 12%�� The change of porosity does not correlate to the buried depth�� It is the major significant differences in the distributive characteristics compared to the normal sedimentary rock reservoirs�� Most of intrusive rocks underwent alteration diagenesis whilst some were subjected to precipitation diagenesis�� The spongy and cavernous pore can be formed during the alteration processes of plagioclase to illite and pyroxene to chlorite�� The secondary porosity is greatly correlated with the alteration intensity of matrix�� plagioclase and pyroxene�� There are pyroxenes and more plagioclases in diabase��which cause the higher alteration intensity than the syenodiorite- porphyrites in the same acid fluid�� So the porosity of diabase is higher than that of syenodiorite- porphyrites�� The top or/and bottom part of intrusive rocks develop the higher porosity�� Because those parts are easy to contact formation fluid��and the shrink fractures give the more surface for reaction be- tween fluid and rock�� The porosity of intrusive rocks is same to the volcanic rocks in Yingtai rift depression and Xujiaweizi rift depression which bear the prolific gas�� It suggests good reservoir potential�� Intrusive rocks are hosted by the dark mudstone which indicates semi- deep and deep lake facies belt�� | |||||||||||||||||||||||||||||||||||||||||||||||||||
Keywords�� Songliao Basin Yingcheng Formation intrusive rocks porosity alteration diagenesis | |||||||||||||||||||||||||||||||||||||||||||||||||||
Received Revised Online: | |||||||||||||||||||||||||||||||||||||||||||||||||||
DOI: | |||||||||||||||||||||||||||||||||||||||||||||||||||
Fund: | |||||||||||||||||||||||||||||||||||||||||||||||||||
Corresponding Authors: | |||||||||||||||||||||||||||||||||||||||||||||||||||
Email: | |||||||||||||||||||||||||||||||||||||||||||||||||||
About author: | |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
References�� | |||||||||||||||||||||||||||||||||||||||||||||||||||
Similar articles | |||||||||||||||||||||||||||||||||||||||||||||||||||
1��LI Yong, REN Yunsheng, HAO Yujie, YANG Qun.Ore-forming fluid characteristics and genesis of vein-type lead-zinc mineralization of Xiaohongshilazi deposit,Jilin Province, China[J]. Global Geology, 2017,20(4): 191-199 | |||||||||||||||||||||||||||||||||||||||||||||||||||
2��WANG Yang, SUN Fengyue, GAO Hongchang, HE Shuyue, QIAN Ye, XU Chenghan.Geochronology and geochemistry of Hutouya monzonitic granite of Qimantage, Qinghai[J]. Global Geology, 2017,20(4): 208-216 | |||||||||||||||||||||||||||||||||||||||||||||||||||
3��LIU Hang, ZHU Jianwei, CHEN Jingwu.Application of sedimentary pyrite in paleo-environment:a case study of Meihe Formation[J]. Global Geology, 2017,20(4): 229-236 | |||||||||||||||||||||||||||||||||||||||||||||||||||
4��WANG Zhongcheng, LU Xiaoping, ZHAO Juan, TAO Junyu, CHEN Mingjian.Dating for Jifanggou metamorphic complex in central Jilin and its tectonic implications[J]. Global Geology, 2017,20(4): 200-207 | |||||||||||||||||||||||||||||||||||||||||||||||||||
5��JING Siliang, LU Qi, WANG Dian.Seismic inversion modeling method for faulted basins:a case study of Liaohe Beach in Bijialing region[J]. Global Geology, 2017,20(4): 253-258 | |||||||||||||||||||||||||||||||||||||||||||||||||||
6��LIU Caihua, QU Xin, FENG Xuan, TIAN You, LIU Yang, QIAO Hanqing, WANG Shiyu.Application of high-frequency magnetotelluric method in porphyry copper deposit exploration:a case study of Duobaoshan deposit area[J]. Global Geology, 2017,20(4): 246-252 | |||||||||||||||||||||||||||||||||||||||||||||||||||
7��YIN Yue, WANG Li, SUN Xia, JIANG Hefang, LI Liang.U-Pb geochronology, geochemistry and tectonic implications ofdiorite from Nangnimsan of Mehe in northern Da Hinggan Mountains[J]. Global Geology, 2017,20(4): 217-228 | |||||||||||||||||||||||||||||||||||||||||||||||||||
8��WU You, SHAN Xuanlong, YI Jian.Volcanic edifices of Yingcheng Formation in Changling fault depression of Songliao Basin and their seismic identification[J]. Global Geology, 2017,20(4): 237-245 | |||||||||||||||||||||||||||||||||||||||||||||||||||
9��Nareerat Boonchai, Marc Philippe, Paul A. Carling, Lyubov Meshkova.A preliminary investigation of fossil wood from Lower Mekong Basin of Southeast Asia[J]. Global Geology, 2017,20(3): 131-143 | |||||||||||||||||||||||||||||||||||||||||||||||||||
10��GONG Qiming, HAN Liguo, ZHOU Jinju.Elastic reverse time migration based on vector wavefield decomposition[J]. Global Geology, 2017,20(3): 184-190 | |||||||||||||||||||||||||||||||||||||||||||||||||||
11��YUAN Zhiyi, ZENG Zhaofa, JIANG Dandan, HUAI Nan, ZHOU Fei.Multi-component joint inversion of gravity gradient based on fast forward calculation[J]. Global Geology, 2017,20(3): 176-183 | |||||||||||||||||||||||||||||||||||||||||||||||||||
12��ZHANG Junyi, LI Bile, ZHAO Guoquan, NING Chuanqi, SUN Jing, WANG Guozhi.Geochemistry, U-Pb, Hf isotopic characteristics and geological significance of Zhalaxiageyong trachydacite in Tuotuohe area, Qinghai[J]. Global Geology, 2017,20(3): 153-163 | |||||||||||||||||||||||||||||||||||||||||||||||||||
13��LEI Honglei, ZHANG Yanjun, WU Fan, HU Zhongjun, YU Ziwang, ZHU Chengcheng, LÜ Tianqi.Parallel numerical simulation on CO2 geologic storage in Ordos Basin, China[J]. Global Geology, 2017,20(3): 164-169 | |||||||||||||||||||||||||||||||||||||||||||||||||||
14��Seyed Ahmad Babazadeh, Seyedeh Malihe Hamidzadeh.Biostratigraphy of Asmari Formation in Ghare Agha seyed of Farsan region, Chaharmahale Bakhtiari Province, Iran[J]. Global Geology, 2017,20(3): 144-152 | |||||||||||||||||||||||||||||||||||||||||||||||||||
15��YANG Guang, FAN Yeyu, LIU Changli.Gas accumulation mechanism in Denglouku Formation of Changling fault depression, southern Songliao Basin, China[J]. Global Geology, 2017,20(3): 170-175 | |||||||||||||||||||||||||||||||||||||||||||||||||||
Copyright by Global Geology |