|
Global Geology 2016, 19(1) 1-5 DOI:
ISSN: 1673-9736 CN: 22-1371/P |
|
|
|
|
Current Issue |
Archive |
Search
[Print]
[Close]
|
|
���� |
|
��esearch on drilling parameters of engine- powered auger ice drill |
|
|
Mikhail Sysoev and Pavel Talalay |
|
|
Polar ��esearch Center��Jilin University��Changchun 130026��China |
|
|
Abstract��
Drilling operations in polar regions and mountainous areas are complicated by nature of the extreme environment�� Yet conventional rotary drilling technologies can be used to drill ice for scientific samples and oth- er research�� Due to such reasons as power consumption and weight complications��it is hard to apply a conven- tional rotary drilling rig for glacial exploration�� Use of small��relatively lightweight��portable engine- powered drilling systems in which the drill lifting from the borehole is carried by the winch�� It is reasonable enough for near- surface shallow ice- drilling down to 50 m�� Such systems can be used for near- surface ablation- stakes in- stallation��also temperature measurements at the bottom of active strata layer��revealing of anthropogenic pollu- tion��etc�� The specified used in this research is an auger ice drill powered by a gasoline engine�� At this stage�� it is crucial to choose effective drilling parameters such as weight on bit (WOB) and drill bit rotation rate�� Sen- sors equipped on the rig have measured the main parameters of the drilling process��such as drill speed��WOB�� drill rotation speed��torque and temperature�� This paper addresses research on drilling parameters of engine powered auger ice drill and supplies some recommendations for optimization of any ice- core drilling process�� |
|
Keywords��
engine- powered auger ice drill
gasoline engine
drilling parameters
rate of penetration (��OP)
weight on bit (WOB)
torque
|
|
|
Received Revised Online: |
|
|
DOI: |
|
|
Fund: |
|
Corresponding Authors: |
|
Email: |
|
|
About author: |
|
|
References�� |
|
Similar articles |
1��LI Yong, REN Yunsheng, HAO Yujie, YANG Qun.Ore-forming fluid characteristics and genesis of vein-type lead-zinc mineralization of Xiaohongshilazi deposit,Jilin Province, China[J]. Global Geology, 2017,20(4): 191-199 |
2��WANG Yang, SUN Fengyue, GAO Hongchang, HE Shuyue, QIAN Ye, XU Chenghan.Geochronology and geochemistry of Hutouya monzonitic granite of Qimantage, Qinghai[J]. Global Geology, 2017,20(4): 208-216 |
3��LIU Hang, ZHU Jianwei, CHEN Jingwu.Application of sedimentary pyrite in paleo-environment:a case study of Meihe Formation[J]. Global Geology, 2017,20(4): 229-236 |
4��WANG Zhongcheng, LU Xiaoping, ZHAO Juan, TAO Junyu, CHEN Mingjian.Dating for Jifanggou metamorphic complex in central Jilin and its tectonic implications[J]. Global Geology, 2017,20(4): 200-207 |
5��JING Siliang, LU Qi, WANG Dian.Seismic inversion modeling method for faulted basins:a case study of Liaohe Beach in Bijialing region[J]. Global Geology, 2017,20(4): 253-258 |
6��LIU Caihua, QU Xin, FENG Xuan, TIAN You, LIU Yang, QIAO Hanqing, WANG Shiyu.Application of high-frequency magnetotelluric method in porphyry copper deposit exploration:a case study of Duobaoshan deposit area[J]. Global Geology, 2017,20(4): 246-252 |
7��YIN Yue, WANG Li, SUN Xia, JIANG Hefang, LI Liang.U-Pb geochronology, geochemistry and tectonic implications ofdiorite from Nangnimsan of Mehe in northern Da Hinggan Mountains[J]. Global Geology, 2017,20(4): 217-228 |
8��WU You, SHAN Xuanlong, YI Jian.Volcanic edifices of Yingcheng Formation in Changling fault depression of Songliao Basin and their seismic identification[J]. Global Geology, 2017,20(4): 237-245 |
9��Nareerat Boonchai, Marc Philippe, Paul A. Carling, Lyubov Meshkova.A preliminary investigation of fossil wood from Lower Mekong Basin of Southeast Asia[J]. Global Geology, 2017,20(3): 131-143 |
10��GONG Qiming, HAN Liguo, ZHOU Jinju.Elastic reverse time migration based on vector wavefield decomposition[J]. Global Geology, 2017,20(3): 184-190 |
11��YUAN Zhiyi, ZENG Zhaofa, JIANG Dandan, HUAI Nan, ZHOU Fei.Multi-component joint inversion of gravity gradient based on fast forward calculation[J]. Global Geology, 2017,20(3): 176-183 |
12��ZHANG Junyi, LI Bile, ZHAO Guoquan, NING Chuanqi, SUN Jing, WANG Guozhi.Geochemistry, U-Pb, Hf isotopic characteristics and geological significance of Zhalaxiageyong trachydacite in Tuotuohe area, Qinghai[J]. Global Geology, 2017,20(3): 153-163 |
13��LEI Honglei, ZHANG Yanjun, WU Fan, HU Zhongjun, YU Ziwang, ZHU Chengcheng, LÜ Tianqi.Parallel numerical simulation on CO2 geologic storage in Ordos Basin, China[J]. Global Geology, 2017,20(3): 164-169 |
14��Seyed Ahmad Babazadeh, Seyedeh Malihe Hamidzadeh.Biostratigraphy of Asmari Formation in Ghare Agha seyed of Farsan region, Chaharmahale Bakhtiari Province, Iran[J]. Global Geology, 2017,20(3): 144-152 |
15��YANG Guang, FAN Yeyu, LIU Changli.Gas accumulation mechanism in Denglouku Formation of Changling fault depression, southern Songliao Basin, China[J]. Global Geology, 2017,20(3): 170-175 |
|
Copyright by Global Geology |