Global Geology 2014, 17(4) 225-230 DOI:     ISSN: 1673-9736 CN: 22-1371/P

Current Issue | Archive | Search                                                            [Print]   [Close]
论文
Information and Service
This Article
Supporting info
PDF(808KB)
[HTML]
Reference
Service and feedback
Email this article to a colleague
Add to Bookshelf
Add to Citation Manager
Cite This Article
Email Alert
Keywords
3D inversion
borehole gravity data
cokriging
Authors
GENG Meixia 1
HUANG Danian 1 and XU Bowen
PubMed
Article by GENG Meixia 1
Article by HUANG Danian 1 and XU Bowen

3D inversion of borehole gravity data using cokriging

GENG Meixia, HUANG Danian and XU Bowen

1. College of Geo- Exploration Science and Technology,Jilin University,Changchun 130026,China; 2. No. 1 Institute of Geology and Mineral Resources of Shandong Province,Ji'nan 250014,China

Abstract

Borehole gravity has been used in mineral exploration recently with the advent of slim- hole gravime- ters. It is logical to perform inversion to utilize the information in the newly acquired data. The inversions were carried out by using cokriging,which is a geostatistical method of estimation that minimizes the error variance by applying cross- correlation between several variables. In this study the estimated densities are derived by using boreholes gravity and known densities along the borehole. This method does not need iterative process and computes efficiently. The selection of examples demonstrates that this method has the ability to include physical property from borehole measurements in the inversion. The synthetic examples demonstrate the density variation along a borehole can be well determined without depth constraints in the inversion. The resolution of the reco- vered model can be further improved by including the densities along the borehole for inversion. However,this capability decreases dramatically with the increasing of distance between the anomalous body and the borehole.

Keywords 3D inversion   borehole gravity data   cokriging  
Received  Revised  Online:  
DOI:
Fund:
Corresponding Authors:
Email:
About author:

References:
Similar articles
1.YAN Xiangyu,YANG Debin,MU Maosong and HAO Leran.U - Pb -Hf isotopes and petrogenesis of Late Jurassic akakitic quartz monzodiorite in Xingcheng area,western Liaoning Province[J]. Global Geology, 2021,24(3): 129-143
2. YANG Junjie,SUN Hui,WEI Chengwu,JIANG Zhenghong and LI Meng. Application of topography fast marching method in landslide[J]. Global Geology, 2021,24(3): 160-168
3.SUN Hongzhan and WU Qiong. A voxel - based fine - scale 3D landscape pattern analysis using laser scanner point clouds[J]. Global Geology, 2021,24(3): 177-182
4.SUN Qu,WANG Li,ZHANG Yongsheng,FAN Xingzhu,ZHANG Guofeng,SHENG Jianhua,CHEN Xiaohang and LIU Xiang.Characteristics and sources of ore - forming fluids of South Narimalahei copper polymetallic deposit in East Kunlun,Qinghai[J]. Global Geology, 2021,24(3): 144-153
5. WANG Ying,FENG Xuan,LIANG Wenjing,LI Xiaotian and XUE Cewen. Subsurface target recognition in Utopia Planitia of
Mars by Tianwen - 1 FP - SPR simulation
[J]. Global Geology, 2021,24(3): 169-176
6.GUO Yiru,YU Minghui,LI Zongyu,BAYAN Xianmutihan,JIA Yudong and WANG Xinyu.Structural characteristics and hydrocarbon accumulation in Bashituo area,Tarim Basin[J]. Global Geology, 2021,24(3): 154-159
7.JIN Daoming and WU Qiong. Super - resolution reconstruction based on CNN: A case study of Jilin - 1 multispectral data[J]. Global Geology, 2021,24(3): 183-188
8.BAKHT Shahzad,SUN Fengyue,WANG Linlin,XU Chenghan,YE Lina, ZHU Xinran and FAN Xingzhu. Origin of ore-forming fluids in Qinggouzi stibnite deposit,NE China: Constraints from fluid inclusions and H-O-S isotopes[J]. Global Geology, 2021,24(2): 80-88
9. XUE Meiqi,LIU Sixin,LU Qi,LI Hongqing,WANG Yuanxin,CHANG Xinghao,RAN Limin,ZHAO Yonggang and LI Jianwei. Common offset ground penetrating radar data inversion based on ray theory[J]. Global Geology, 2021,24(2): 103-110
10. WANG Haonan,HOU Guanglei,YANG Changbao and SONG Xiaolin. Evolution characteristics of hydrological connectivity
pattern of marsh wetland in Naoli River Basin
[J]. Global Geology, 2021,24(2): 95-102
11.HAN Fuxing,YI Xin,SUN Zhangqing,HU Jia,XU Baoyin and XU Hai. Application of Gaussian beam pre-stack depth
migration in rugged seabed
[J]. Global Geology, 2021,24(2): 119-128
12. ZHANG Wei,LI Zhuang,YANG Fan,PEI Fuping,LIU Jin,WANG Junhui1 and WANG Zhiwei. Chemical indexes of Paleoproterozoic sedimentary rocks from  Liaohe Group,North China Craton: Implications for  paleoclimate and provenance[J]. Global Geology, 2021,24(2): 71-79
13. ZHANG Junsheng,JIA Xiaoyu and GONG Hui. Geochemical characteristics and sedimentary environment significance of carbonate rocks in Nanfen Formation of Qingbaikou System in Tonghua,Jilin Province[J]. Global Geology, 2021,24(2): 89-94
14. YAN Weicun,LIU Sixin,CHANG Xinghao,RAN Limin,ZHAO Yonggang and LI Jianwei. Influence of fracture width on borehole radar response[J]. Global Geology, 2021,24(2): 111-118
15.LI Zhuoyang,HAN Jiangtao,LIU Lijia and XIN Zhonghua. Application of high - density resistivity method for assessing construction safety of Shimodong tunnel in Helong City of Jilin Province[J]. Global Geology, 2021,24(1): 43-48

Copyright by Global Geology