Global Geology 2012, 15(1) 53-57 DOI:     ISSN: 1673-9736 CN: 22-1371/P

Current Issue | Archive | Search                                                            [Print]   [Close]
����
Information and Service
This Article
Supporting info
PDF(350KB)
[HTML]
Reference
Service and feedback
Email this article to a colleague
Add to Bookshelf
Add to Citation Manager
Cite This Article
Email Alert
Keywords
water saturation
triple porosity model
dual porosity model
complex pore structure
Authors
BIAN Huiyuan1
SHI Danhong2
HAN Shuang3
PAN Baozhi1and ZHANG Lihua1
PubMed
Article by BIAN Huiyuan1
Article by SHI Danhong2
Article by HAN Shuang3
Article by PAN Baozhi1and ZHANG Lihua1

Study on water saturation computation models in complex pore volcanic reservoir

BIAN Huiyuan1, SHI Danhong2, HAN Shuang3, PAN Baozhi1and ZHANG Lihua1

1�� College of Geo-Exploration Science and Technology��Jilin University��Changchun 130026��China; 2�� No�� 2 Well Logging Company��Daqing Drilling �� Exploration Engineering Corp�� ��Songyuan 138000��Jilin��China; 3�� Research Institute of Exploration and Development��Northeast Oil �� Gas Branch��SINOPEC��Changchun 130026��China

Abstract��

Determination of water saturation is important for reservoir evaluation�� When complex pore structures such as fracture and cavity are present in reservoir��Archie equation is no longer suitable�� According to different models of pore structure division��the authors studied water saturation computation models�� The results show that dual porosity system is divided into four models�� The first model is based on dual laterolog��the second is Dual Porosity ��the third is Dual Porosity��and the last one is based on the conductive pore�� Besides��the triple porosity system is triple porosity model�� Compute water saturation was using all the above five models in volcanic reservoir in Songnan gas field�� The triple porosity system is the most suitable model for water saturation computation in complex pore structure volcanic reservoir��

Keywords�� water saturation   triple porosity model   dual porosity model   complex pore structure  
Received  Revised  Online:  
DOI:
Fund:
Corresponding Authors:
Email:
About author:

References��
Similar articles
1��LI Yong, REN Yunsheng, HAO Yujie, YANG Qun.Ore-forming fluid characteristics and genesis of vein-type lead-zinc mineralization of Xiaohongshilazi deposit,Jilin Province, China[J]. Global Geology, 2017,20(4): 191-199
2��WANG Yang, SUN Fengyue, GAO Hongchang, HE Shuyue, QIAN Ye, XU Chenghan.Geochronology and geochemistry of Hutouya monzonitic granite of Qimantage, Qinghai[J]. Global Geology, 2017,20(4): 208-216
3��LIU Hang, ZHU Jianwei, CHEN Jingwu.Application of sedimentary pyrite in paleo-environment:a case study of Meihe Formation[J]. Global Geology, 2017,20(4): 229-236
4��WANG Zhongcheng, LU Xiaoping, ZHAO Juan, TAO Junyu, CHEN Mingjian.Dating for Jifanggou metamorphic complex in central Jilin and its tectonic implications[J]. Global Geology, 2017,20(4): 200-207
5��JING Siliang, LU Qi, WANG Dian.Seismic inversion modeling method for faulted basins:a case study of Liaohe Beach in Bijialing region[J]. Global Geology, 2017,20(4): 253-258
6��LIU Caihua, QU Xin, FENG Xuan, TIAN You, LIU Yang, QIAO Hanqing, WANG Shiyu.Application of high-frequency magnetotelluric method in porphyry copper deposit exploration:a case study of Duobaoshan deposit area[J]. Global Geology, 2017,20(4): 246-252
7��YIN Yue, WANG Li, SUN Xia, JIANG Hefang, LI Liang.U-Pb geochronology, geochemistry and tectonic implications ofdiorite from Nangnimsan of Mehe in northern Da Hinggan Mountains[J]. Global Geology, 2017,20(4): 217-228
8��WU You, SHAN Xuanlong, YI Jian.Volcanic edifices of Yingcheng Formation in Changling fault depression of Songliao Basin and their seismic identification[J]. Global Geology, 2017,20(4): 237-245
9��Nareerat Boonchai, Marc Philippe, Paul A. Carling, Lyubov Meshkova.A preliminary investigation of fossil wood from Lower Mekong Basin of Southeast Asia[J]. Global Geology, 2017,20(3): 131-143
10��GONG Qiming, HAN Liguo, ZHOU Jinju.Elastic reverse time migration based on vector wavefield decomposition[J]. Global Geology, 2017,20(3): 184-190
11��YUAN Zhiyi, ZENG Zhaofa, JIANG Dandan, HUAI Nan, ZHOU Fei.Multi-component joint inversion of gravity gradient based on fast forward calculation[J]. Global Geology, 2017,20(3): 176-183
12��ZHANG Junyi, LI Bile, ZHAO Guoquan, NING Chuanqi, SUN Jing, WANG Guozhi.Geochemistry, U-Pb, Hf isotopic characteristics and geological significance of Zhalaxiageyong trachydacite in Tuotuohe area, Qinghai[J]. Global Geology, 2017,20(3): 153-163
13��LEI Honglei, ZHANG Yanjun, WU Fan, HU Zhongjun, YU Ziwang, ZHU Chengcheng, LÜ Tianqi.Parallel numerical simulation on CO2 geologic storage in Ordos Basin, China[J]. Global Geology, 2017,20(3): 164-169
14��Seyed Ahmad Babazadeh, Seyedeh Malihe Hamidzadeh.Biostratigraphy of Asmari Formation in Ghare Agha seyed of Farsan region, Chaharmahale Bakhtiari Province, Iran[J]. Global Geology, 2017,20(3): 144-152
15��YANG Guang, FAN Yeyu, LIU Changli.Gas accumulation mechanism in Denglouku Formation of Changling fault depression, southern Songliao Basin, China[J]. Global Geology, 2017,20(3): 170-175

Copyright by Global Geology