|
Global Geology 2011, 14(4) 265-278 DOI:
ISSN: 1673-9736 CN: 22-1371/P |
|
|
|
|
Current Issue |
Archive |
Search
[Print]
[Close]
|
|
论文 |
|
Kernelized fourth quantification theory for mineral target prediction |
|
|
CHEN Yongliang1, LI Xuebin1 and LIN Nan2 |
|
|
1. Institute of Mineral Resources Prognosis on Synthetic Information,Jilin University,Changchun 130026,China; 2. Survey and Exploration Engineering College,Jilin Institute of Architecture and Civil Engineering,Changchun 130118,China |
|
|
Abstract:
This paper presents a nonlinear multidimensional scaling model,called kernelized fourth quantification theory,which is an integration of kernel techniques and the fourth quantification theory. The model can deal with the problem of mineral prediction without defining a training area. In mineral target prediction,the pre-defined statistical cells,such as grid cells,can be implicitly transformed using kernel techniques from input space to a high-dimensional feature space,where the nonlinearly separable clusters in the input space are expected to be linearly separable. Then,the transformed cells in the feature space are mapped by the fourth quantification theory onto a low-dimensional scaling space,where the scaled cells can be visually clustered according to their spatial locations. At the same time,those cells,which are far away from the cluster center of the majority of the scaled cells,are recognized as anomaly cells. Finally,whether the anomaly cells can serve as mineral potential target cells can be tested by spatially superimposing the known mineral occurrences onto the anomaly cells. A case study shows that nearly all the known mineral occurrences spatially coincide with the anomaly cells with nearly the smallest scaled coordinates in one-dimensional scaling space. In the case study,the mineral target cells delineated by the new model are similar to those predicted by the well-known WofE model. |
|
Keywords:
kernel function
feature space
fourth quantification theory
nonlinear transformation
mineral target prediction
|
|
|
Received Revised Online: |
|
|
DOI: |
|
|
Fund: |
|
Corresponding Authors: |
|
Email: |
|
|
About author: |
|
|
References: |
|
Similar articles |
1.YAN Xiangyu,YANG Debin,MU Maosong and HAO Leran.U - Pb -Hf isotopes and petrogenesis of Late Jurassic akakitic quartz monzodiorite in Xingcheng area,western Liaoning Province[J]. Global Geology, 2021,24(3): 129-143 |
2. YANG Junjie,SUN Hui,WEI Chengwu,JIANG Zhenghong and LI Meng. Application of topography fast marching method in landslide[J]. Global Geology, 2021,24(3): 160-168 |
3.SUN Hongzhan and WU Qiong. A voxel - based fine - scale 3D landscape pattern analysis using laser scanner point clouds[J]. Global Geology, 2021,24(3): 177-182 |
4.SUN Qu,WANG Li,ZHANG Yongsheng,FAN Xingzhu,ZHANG Guofeng,SHENG Jianhua,CHEN Xiaohang and LIU Xiang.Characteristics and sources of ore - forming fluids of South Narimalahei copper polymetallic deposit in East Kunlun,Qinghai[J]. Global Geology, 2021,24(3): 144-153 |
5. WANG Ying,FENG Xuan,LIANG Wenjing,LI Xiaotian and XUE Cewen. Subsurface target recognition in Utopia Planitia of
Mars by Tianwen - 1 FP - SPR simulation [J]. Global Geology, 2021,24(3): 169-176 |
6.GUO Yiru,YU Minghui,LI Zongyu,BAYAN Xianmutihan,JIA Yudong and WANG Xinyu.Structural characteristics and hydrocarbon accumulation in Bashituo area,Tarim Basin[J]. Global Geology, 2021,24(3): 154-159 |
7.JIN Daoming and WU Qiong. Super - resolution reconstruction based on CNN: A case study of Jilin - 1 multispectral data[J]. Global Geology, 2021,24(3): 183-188 |
8.BAKHT Shahzad,SUN Fengyue,WANG Linlin,XU Chenghan,YE Lina, ZHU Xinran and FAN Xingzhu. Origin of ore-forming fluids in Qinggouzi stibnite deposit,NE China: Constraints from fluid inclusions and H-O-S isotopes[J]. Global Geology, 2021,24(2): 80-88 |
9. XUE Meiqi,LIU Sixin,LU Qi,LI Hongqing,WANG Yuanxin,CHANG Xinghao,RAN Limin,ZHAO Yonggang and LI Jianwei. Common offset ground penetrating radar data inversion based on ray theory[J]. Global Geology, 2021,24(2): 103-110 |
10. WANG Haonan,HOU Guanglei,YANG Changbao and SONG Xiaolin. Evolution characteristics of hydrological connectivity
pattern of marsh wetland in Naoli River Basin [J]. Global Geology, 2021,24(2): 95-102 |
11.HAN Fuxing,YI Xin,SUN Zhangqing,HU Jia,XU Baoyin and XU Hai. Application of Gaussian beam pre-stack depth
migration in rugged seabed [J]. Global Geology, 2021,24(2): 119-128 |
12. ZHANG Wei,LI Zhuang,YANG Fan,PEI Fuping,LIU Jin,WANG Junhui1 and WANG Zhiwei. Chemical indexes of Paleoproterozoic sedimentary rocks from Liaohe Group,North China Craton: Implications for paleoclimate and provenance[J]. Global Geology, 2021,24(2): 71-79 |
13. ZHANG Junsheng,JIA Xiaoyu and GONG Hui. Geochemical characteristics and sedimentary environment significance of carbonate rocks in Nanfen Formation of Qingbaikou System in Tonghua,Jilin Province[J]. Global Geology, 2021,24(2): 89-94 |
14. YAN Weicun,LIU Sixin,CHANG Xinghao,RAN Limin,ZHAO Yonggang and LI Jianwei. Influence of fracture width on borehole radar response[J]. Global Geology, 2021,24(2): 111-118 |
15.LI Zhuoyang,HAN Jiangtao,LIU Lijia and XIN Zhonghua. Application of high - density resistivity method for assessing construction safety of Shimodong tunnel in Helong City of Jilin Province[J]. Global Geology, 2021,24(1): 43-48 |
|
Copyright by Global Geology |