|
Global Geology 2024, 27(3) 167-176 DOI:
ISSN: 1673-9736 CN: 22-1371/P |
|
|
|
|
Current Issue |
Archive |
Search
[Print]
[Close]
|
|
|
|
Horizontal-to-vertical spectral ratio inversion method based on multimodal forest optimization algorithm |
|
|
CHEN Xuanning, HAN Fuxing, GAO Zhenghui * , SUN Zhangqing and HAN Jiangtao |
|
|
College of Geo-Exploration Science and Technology, Jilin University, Changchun 130026, China |
|
|
Abstract:
The exploration of urban underground spaces is of great signiffcance to urban planning, geological disaster prevention, resource exploration and environmental monitoring. However, due to the existing of severe interferences, conventional seismic methods cannot adapt to the complex urban environment well. Since adopting the single-node data acquisition method and taking the seismic ambient noise as the signal, the microtremor horizontal-to-vertical spectral ratio (HVSR) method can effectively avoid the strong interference problems caused by the complex urban environment, which could obtain information such as S-wave velocity and thickness of underground formations by fitting the microtremor HVSR curve. Nevertheless, HVSR curve inversion is a multi-parameter curve fftting process. And conventional inversion methods can easily converge to the local minimum, which will directly affect the reliability of the inversion results. Thus, the authors propose a HVSR inversion method based on the multimodal forest optimization algorithm, which uses the efffcient clustering technique and locates the global optimum quickly. Tests on synthetic data show that the inversion results of the proposed method are consistent with the forward model. Both the adaption and stability to the abnormal layer velocity model are demonstrated. The results of the real ffeld data are also veriffed by the drilling information.
|
|
Keywords:
microtremor
HVSR method
multimodal forest optimization algorithm
HVSR curve inversion
|
|
|
Received Revised Online: |
|
|
DOI: |
|
|
Fund: |
|
Corresponding Authors: |
|
Email: |
|
|
About author: |
|
|
References: |
|
Similar articles |
1.WEI Laonao, LIU Yunhe* and ZHANG Bo . UAV-based transient electromagnetic 3D forward modeling and inversion and analysis of exploration capability [J]. Global Geology, 2024,27(3): 154-166 |
2.DU Meng,MAO Weijian,YANG Maoxin and ZHAO Jianzhi . Migration images guided high-resolution velocity modeling based on fully convolutional neural network [J]. Global Geology, 2024,27(3): 145-153 |
3.Kovalenko S. V. 1,Kezina T. V. 2*,Kryuchko E. I. 1 and Mironov M. A. 1 . Preliminary results of lithological and palynological study of Svobodny, ancient man’s parking relic in Amur region, Russia [J]. Global Geology, 2024,27(3): 121-131 |
4.ZHANG Xinrong,WANG Jiayu,PING Shuaifei and LI Yaran . Changes of grain size from peat proffle in eastern mountainous area over past 2000 years, Jilin Province, Northeast China [J]. Global Geology, 2024,27(3): 132-144 |
5.ZHAO Junfeng,LI Weimin,LIU Tongjun and GAO Jinhui . Genesis and tectonic setting of Early Jurassic granitic rocks in Huashan Town, Xingcheng, western Liaoning[J]. Global Geology, 2024,27(1): 1-19 |
6.WU Haoran,YANG Hao,GE Wenchun,JI Zheng,DONG Yu,JING Yan and JING Jiahao . Spatial-temporal distribution and geochemistry of highly evolved Mesozoic granites in Great Xing’an Range, NE China: Discriminant criteria and geological signi?cance[J]. Global Geology, 2024,27(1): 20-34 |
7.WANG Weihua and WANG Tingting . Acoustic emission signal identi?cation of di?erent rocks based on SE-1DCNN-BLSTM network model [J]. Global Geology, 2024,27(1): 43-55 |
8.ZHENG Chao,WANG Yanlong,ZHANG Baohui and DU Lizhi . Application of transient Rayleigh wave in detection of tunnel lining void area [J]. Global Geology, 2024,27(1): 56-62 |
9.JIA Zhenyang,LI Gang and FENG Fan . Numerical simulation of formation mechanism of unloading joints in granitic pluton[J]. Global Geology, 2024,27(1): 35-42 |
10.MUHAMMAD Hassan, WU Wenhao and YANG Jinyue. Exploring the first occurrence of Scincomorpha lizard from Nenjiang Formation (lower Campanian) of Jilin, Northeast China: a follow-up study[J]. Global Geology, 2023,26(4): 199-210 |
11.LI Jingshuang,ZHANG Xiangjia,HE Xijun and ZHOU Yanjie. Least-squares reverse time migration in visco-acoustic media based on symplectic stereo-modeling method[J]. Global Geology, 2023,26(4): 237-250 |
12.WANG Ruiqi, LI Hong and SHANG Yi. Change of cultivated land area and effect on ecosystem service in black soil region in Northeast China: a case study of Lishu County, Jilin Province[J]. Global Geology, 2023,26(4): 251-263 |
13.DONG Min, LIANG Minliang, DONG Hui, FENG Xingqiang, ZHANG Linyan and WANG Zongxiu. Geochemical characteristics of temperature and pressure of Paleozoic reservoir fluid inclusions in Xuanjing region, Lower Yangtze area[J]. Global Geology, 2023,26(4): 222-236 |
14.HAN Junwei,SHAN Xuanlong,YIMING Ablimiti,BIAN Baoli,LIU Hailei,LI Ang and YI Jian. Characteristics and identification of weathering crust of Pennsylvanian volcanic rocks in Shixi area, Junggar Basin[J]. Global Geology, 2023,26(4): 211-221 |
15.WANG Hongxiang,DU Lizhi1 and SUN Zhen. Optimization design of conical reaction teeth of shear wave vibroseis vibration plate[J]. Global Geology, 2023,26(4): 264-272 |
|
Copyright by Global Geology |