Research on realization of Kirchhoff remigration

LI Jianhua, SUN Jianguo

Global Geology ›› 2018, Vol. 21 ›› Issue (2) : 120-126.

PDF(660 KB)
PDF(660 KB)
Global Geology ›› 2018, Vol. 21 ›› Issue (2) : 120-126. DOI: 10.3969/j.issn.1673-9736.2018.02.05
Articles

Research on realization of Kirchhoff remigration

  • LI Jianhua, SUN Jianguo
Author information +
History +

Abstract

Remigration is an imaging method that maps migrated image fields of different migration velocity fields to each other.It is mainly used for migration velocity analysis,wave mode transformation,and data regularization.Theoretically,this kind of mapping can be realized by differential operator,or by integral operator.Compared between the two,the integral operator achieves higher computational efficiency and has more adaptability to the irregularity of the input data.Given the fact,the authors worked out the depth domain remigration method based on the Kirchhoff integral theory with the basic theory and workflow of the Kirchhoff remigration.The calculation results on the gradient model and Marmousi model verify the effectiveness of this method.In addition,numerical experiments show that integral method is faster than the differential method.

Key words

remigration / Kirchhoff / velocity field

Cite this article

Download Citations
LI Jianhua, SUN Jianguo. Research on realization of Kirchhoff remigration[J]. Global Geology. 2018, 21(2): 120-126 https://doi.org/10.3969/j.issn.1673-9736.2018.02.05

References

Adler F. 2002. Kirchhoff image propagation. Geophysics,67(1):126-134.
Coimbra T A, de Figueiredo S, Schleicher J,et al. 2013. Migration velocity analysis using residual diffraction moveout in the poststack depth domain.Geophysics,78(3):S125-S135.
Decker L, Merzlikin D, Fomel S. 2017. Diffraction imaging and time-migration velocity analysis using oriented velocity continuation.Geophysics,82(2):U25-U35.
Fomel S. 1994. Method of velocity continuation in the problem of temporal seismic migration.Russian Geology and Geophysics,35(5):100-111.
Fomel S. 2003a. Time-migration velocity analysis by velocity continuation. Geophysics,68(5):1662-1672.
Fomel S. 2003b. Velocity continuation and the anatomy of residual prestack time migration.Geophysics,68(5):1650-1661.
Hubral P, Schleicher J, Tygel M. 1996a. A unified approach to 3-D seismic reflection imaging, Part I:basic concepts.Geophysics,61(3):742-758.
Hubral P, Tygel M, Schleicher J. 1996b. Seismic image waves.Geophysical Journal International,125(2):431-442.
Novais A, Costa J, Schleicher J. 2008. GPR velocity determination by image-wave remigration.Journal of Applied Geophysics,65(2):65-72.
Schleicher J, Aleixo R. 2006. Time and depth remigration in elliptically anisotropic media using image-wave propagation.Geophysics,72(1):S1-S9.
Schleicher J, Novais A, Costa J C. 2008. Vertical image waves in elliptically anisotropic media.Studia Geophysica et Geodaetica,52(1):101-122.
Schleicher J, Novais A, Munerato F P. 2004. Migration velocity analysis by depth image wave remigration:first results.Geophysical Prospecting,52(6):559-573.
Sethian J A. 1999. Fast marching methods.SIAM Review,41(2):199-235.
Sun J G. 2010. The stationary phase analysis of Kirchhoff-type de-migration field.Applied Geophysics:English Edition,7(1):18-30.
Sun Z Q, Sun J G, Han F X. 2012. The comparison of three schemes for computing seismic wave travel-times in complex topographical conditions.Chinese Journal of Geophysics,55(2):560-568. (in Chinese with English abstract)
Tygel M, Schleicher J, Hubral P,et al. 1993. Multiple weights in diffraction stack migration.Geophysics,58(12):1820-1830.
Tygel M, Schleicher J, Hubral P. 1996. A unified approach to 3-D seismic reflection imaging, part Ⅱ:theory.Geophysics,61(3):759-775.

Funding

Support by Project of National Natural Science Foundation of China (No.41274120).
PDF(660 KB)

Accesses

Citation

Detail

Sections
Recommended

/