Wavelet packet envelope multi-scale full waveform inversion

ZHANG Tianze, HAN Liguo

Global Geology ›› 2018, Vol. 21 ›› Issue (1) : 68-76.

PDF(1341 KB)
PDF(1341 KB)
Global Geology ›› 2018, Vol. 21 ›› Issue (1) : 68-76. DOI: 10.3969/j.issn.1673-9736.2018.01.08
Articles

Wavelet packet envelope multi-scale full waveform inversion

  • ZHANG Tianze, HAN Liguo
Author information +
History +

Abstract

Full waveform inversion (FWI) is an effective tool for constructing high resolution velocity models, but it is affected by a local minima problem. Without long offsets and low frequency data, it is difficult to apply the conventional multi-scale FWI to actual seismic data. In this study, the large offset and low frequency information are provided by the method of wavelet packet envelope for the conventional FWI. The gradient can be computed efficiently with the adjoint state method without any additional computational cost. Marmousi synthetic data is used to illustrate that, compared with Hilbert envelope-based FWI, wavelet packet envelope FWI can provide an adequately accurate model for the conventional FWI approach even when the initial model is far from the true model and the low-frequency data are missing.

Key words

full waveform inversion / wavelet packet envelope / local minima / cycle skipping

Cite this article

Download Citations
ZHANG Tianze, HAN Liguo. Wavelet packet envelope multi-scale full waveform inversion[J]. Global Geology. 2018, 21(1): 68-76 https://doi.org/10.3969/j.issn.1673-9736.2018.01.08

References

Alkhalifah T, Choi Y. 2012. Taming waveform inversion non-linearity through phase unwrapping of the model and objective functions.Geophysics Journal International,191(3):1170-1178.
Chi B, Dong L, Liu Y. 2014. Full waveform inversion method using envelope objective function without low frequency data.Journal of Applied Geophysics,109:36-46.
Fornberg B. 1987. The pseudo spectral method; comparisons with finite differences for the elastic wave equation.Geophysics,52(4):483-501.
Fornberg B. 1988. The pseudo spectral method; accurate representation of interfaces in elastic wave calculations.Geophysics,53(5):625-637.
Gauthier O, Virieux J, Tarantola A. 1986. Two dimensional nonlinear inversion of seismic waveform:numerical results.Geophysics,51(7):1387-1403.
Gazdag J. 1981. Modeling of the acoustic wave equation with transform methods.Geophysics,46(6):854-859.
Kosloff D, Baysal E. 1982. Forward modeling by a Fourier method.Geophysics,47(10):1402-1412.
Luo J R, Wu R S, Gao J H. 2016. Local minima reduction of seismic envelope inversion.Chinese Journal of Geophysics,59(7):2510-2518. (in Chinese with English abstract)
MORA P. 1987. Nonlinear two-dimensional elastic inversion of multi-offset seismic data.Geophysics,52(9):1211-1228.
Mulder W A, Plessx R E. 2008. Exploring some issues in acoustic full waveform inversion.Geophysics Prospect,56:827-841.
Reshef M, Kosloff D, Edwards M,et al. 1988. Three-dimensional elastic modeling by the Fourier method.Geophysics,53(9):1184-1193.
Virieux J, Calandra H, Plessix R. 2011. A review of the spectral, pseudo-spectral, finite-difference and finite-element modelling techniques for geophysical imaging.Geophysical Prospecting,59(5):794-813.
Virieux J, Operto S. 2009. An overview of full-waveform inversion in exploration geophysics.Geophysics,74(6):WCC1-WCC26.
Wu R S, Luo J R, Wu B Y. 2014. Seismic envelope inversion velocity and modulation signal model.Geophysics,79(3):WA13-WA24.
Yang Q Y, Hu G H, Wang L X. 2014. Research status and development trend of full waveform inversion.Geophysical Prospecting for Petroleum,53(1):77-83.

Funding

Supported by Project of National Natural Science Foundation of China (41674124) and National Key Research and Development Program of China (2016YFC0600301).
PDF(1341 KB)

Accesses

Citation

Detail

Sections
Recommended

/