[an error occurred while processing this directive] Global Geology 2018, 21(2) 77-90 DOI:   10.3969/j.issn.1673-9736.2018.02.01  ISSN: 1673-9736 CN: 22-1371/P

����Ŀ¼ | ����Ŀ¼ | ������� | �߼�����                                                            [��ӡ��ҳ]   [�ر�]
����
��չ����
������Ϣ
Supporting info
PDF(1993KB)
[HTMLȫ��]
�����[PDF]
�����
�����뷴��
�ѱ����Ƽ�������
�����ҵ����
�������ù�����
����
Email Alert
���·���
���������Ϣ
���Ĺؼ����������
A-type rhyolites
Hailar Basin
Early Cretaceous
petrogenesis
lithospheric extension
���������������
PubMed
Geochemistry, petrogenesis and tectonic implication of Early Cretaceous A-type rhyolites in Hailar Basin, NE China
ZHENG Han, SUN Xiaomeng
College of Earth Sciences, Jilin University, Changchun 130061, China
ժҪ�� Early Cretaceous A-type rhyolites of the Shangkuli Formation in the Hailar Basin of NE China exhibit geochemical characteristics of high silicon,alkali,Fe/Mg,Ga/Al,Zr,Pb,HFSEs,and REE contents but low Ca,Ba,Sr and Eu,which meet the criteria of typical reduced A-type granite.The A-type rhyolites are most probably derived from magmatic underplating and partial melting of quartz-feldspathic lower crust,with the lithospheric mantle material involved,due to the extensional deformation of the Erguna-Hulun Fault.Although the A-type rhyolites show A1-type trace elements characteristics,they were formed in a post-orogenic extensional background together with the coeval widespread bimodal volcanic rocks,metamorphic core complexes,volcanic fault basins and metallogenic province in the Sino-Russia-Mongolia border tract.This extension event was related to the collapse of thickened region of the continental crust after the closure of the Mongol-Okhotsk Ocean.
�ؼ����� A-type rhyolites   Hailar Basin   Early Cretaceous   petrogenesis   lithospheric extension  
Geochemistry, petrogenesis and tectonic implication of Early Cretaceous A-type rhyolites in Hailar Basin, NE China
ZHENG Han, SUN Xiaomeng
College of Earth Sciences, Jilin University, Changchun 130061, China
Abstract: Early Cretaceous A-type rhyolites of the Shangkuli Formation in the Hailar Basin of NE China exhibit geochemical characteristics of high silicon,alkali,Fe/Mg,Ga/Al,Zr,Pb,HFSEs,and REE contents but low Ca,Ba,Sr and Eu,which meet the criteria of typical reduced A-type granite.The A-type rhyolites are most probably derived from magmatic underplating and partial melting of quartz-feldspathic lower crust,with the lithospheric mantle material involved,due to the extensional deformation of the Erguna-Hulun Fault.Although the A-type rhyolites show A1-type trace elements characteristics,they were formed in a post-orogenic extensional background together with the coeval widespread bimodal volcanic rocks,metamorphic core complexes,volcanic fault basins and metallogenic province in the Sino-Russia-Mongolia border tract.This extension event was related to the collapse of thickened region of the continental crust after the closure of the Mongol-Okhotsk Ocean.
Keywords: A-type rhyolites   Hailar Basin   Early Cretaceous   petrogenesis   lithospheric extension  
�ո����� 2017-12-05 �޻����� 2018-01-12 ����淢������  
DOI: 10.3969/j.issn.1673-9736.2018.02.01
������Ŀ:

Supported by National Basic Research Program of China (No.2009CB219305).

ͨѶ����: SUN Xiaomeng
���߼��:
����Email: sunxiaomeng5210@163.com

�ο����ף�
Anderson J L, Morrison J. 2005. Ilmenite, magnetite, and peraluminous Mesoproterozoic anorogenic granites of Laurentia and Baltica.Lithos,80(1/4):45-60.
Boynton W V. 1984. Cosmochemistry of the rare earth elements:meteorite studies//Henderson P. (Ed.) Rare earth element geochemistry. Amsterdam:Elsevier, 63-114.
Chabiron A, Cuney M, Poty B. 2003. Possible uranium sources for the largest uranium district associated with volcanism:the Streltsovka caldera (Transbaikalia, Russia).Mineralium Deposita,38:127-140.
Chen J L, Wu H Y, Zhu D F,et al. 2007. Tectonic evolution of the Hailaer Basin and its potentials of oil-gas exploration.Chinese Journal of Geology,42:147-159. (in Chinese with English abstract)
Christiansen R L, Lipman P W. 1972. Cenozoic volcanism and plate-tectonic evolution of the western United States.Philosophical Transactions of the Royal Society of London:Series A Mathematical and Physical Sciences,271:249-284.
Clemens J D, Holloway J R, White A J R. 1986. Origin of the A-type granite:experimental constraints.American Mineralogist,71:317-324.
Collins W J, Beams S D, White A J,et al. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia.Contributions to Mineralogy & Petrology,80:189-200.
Creaser R A, Price R C, Wormald R J. 1991. A-type granites revisited:assessment of a residual-source model.Geology,19:163-166.
Dall'Agnol, Teixeira N P, Ramo O T,et al. 2005. Petrogenesis of the Paleoproterozoic rapakivi A-type granites of the Archean Carajas metallogenic province, Brazil. Lithos,80(1/4):101-129.
Dall'Agnol R, Oliveria D C. 2007. Oxidized, magnetite-series, rapakivi-type granites of Carajas, Brazil:implications for classification and petrogenesis of A-type granites. Lithos,93:215-233.
Dobretsov N L, Vernikovsky V A. 2001. Mantle plumes and their geologic manifestations.International Geology Review,43:771-787.
Dongskaya T V, Windley B F, Mazukabzov A M,et al. 2008. Age and evolution of Late Mesozoic metamorphic core complexes in southern Siberia and northern Mongolia.Journal of the Geological Society,165:405-421.
Douce P, Alberto E. 1997. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids.Geology,25:743-746.
Eby G N. 1990. The A-type granitoids:a review of their occurrence and chemical characteristics and speculations on their petrogenesis.Lithos,26(1/2):115-134.
Eby G N. 1992. Chemical subdivision of the A-type granitoids:petrogenetic and tectonic implications.Geology,20(7):641-644.
Faure M, Natal'in B. 1992. The geodynamic evolution of the eastern Eurasian margin in Mesozoic times.Tectonophysics,208:397-411.
Frost C D, Frost B R. 1997. Reduced rapakivi-type granites:the tholeiite connection.Geology,25(7):647-650.
Frost B R, Barnes C G, Collins W J, et al. 2001. A geochemical classification for granitic rocks. Journal of Petrology,42:2033-2048.
Gao Y G, Li Y H. 2014. Crustal thickness and Vp/Vs in the Northeast China-North China region and its geological implication.Chinese Journal of Geophysics,57(3):847-857. (in Chinese with English abstract)
GB/T 14506. 2010. National standard of the People's Republic of China:methods for chemical analysis of silicate rocks. http://www.doc88.com/p-9939572301815.html
Ge W C, Lin Q, Li X H,et al. 2000. Geochemical characteristics of basalts of the Early Cretaceous Yiliekede formation, north Daxing'anling.Journal of Mineralogy & Petrology,20(3):14-18. (in Chinese with English abstract)
Ge W C, Li X H, Lin Q,et al. 2001. Geochemistry of Early Cretaceous alkaline rhyolites from Hulun Lake, Daxing'anling and its tectonic implications.Chinese Journal of Geology,36(2):176-183. (in Chinese with English abstract)
Gou J, Sun D Y, Zhao Z H,et al. 2010. Zircon LA_ICPMS U-Pb dating and petrogenesis of ryolites in Baiyingaolao Fromation from the southern Manzhouli, Inner-Mongolia.Acta Petrologica Sinica,26:333-344. (in Chinese with English abstract)
Griffin W R, Foland K A, Stern R J,et al. 2010. Geochronology of bimodal alkaline volcanism in the Balcones Igneous Province, Texas:implications for Cretaceous intraplate magmatism in the northern Gulf of Mexico magmatic zone.Journal of Geology,118:1-21.
IMBGMR (Inner Mongolia Bureau of Geology and Mineral Resources). 1991. Regional geology of Inner Mongolia. Beijing:Geological Publishing House, 1-725. (in Chinese)
Jahn B M, Wu F Y, Chen B. 2000. Massive granitoid generation in central Asia:Nd isotopic evidence and implication for continental growth in the Phanerozoic.Episodes,23:82-92.
Kim S W, Oh C W, Ryu I C,et al. 2006. Neoproterozoic Bimodal Volcanism in the Okcheon Belt, South Korea, and its comparison with the Nanhua Rift, South China:implications for Rifting in Rodinia.Journal of Geology,114(6):717-733.
King P L, White A J R, Chappell B W,et al. 1997. Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, southeastern Australia.Journal of Petrology,38:371-391.
Kohoui M, Mahdjoub Y. 2004. An Eburnian alkaline peralkaline magmatism in the Reguibal rise:the Djebel Drissa ring complex (Eglab Shield, Algeria).Journal of African Earth Sciences,39:115-122.
Le Bas M J, Le Maitre R W, Streckeisen A,et al. 1986. A chemical classification of volcanic-rocks based on the total alkali silica diagram.Journal of Petrology,27:745-750.
Li J, Shu L S. 2002. Mesozoic-Cenozoic tectonic features and evolution of the Songliao Basin, NE China.Journal of Nanjing University:Natural Sciences,38:525-531. (in Chinese with English abstract)
Li S Q, Hegner E, Yang Y Z,et al. 2014. Age constraints on Late Mesozoic lithospheric extension and origin of bimodal volcanic rocks from the Hailar Basin, NE China.Lithos,190:204-219.
Lin Q, Ge W C, Sun D Y,et al. 2000. Genetic relationships between two types of Mesozoic rhyolite and basalts in Great Xing'an Ridge.Journal of Changchun University of Science and Technology,30(4):322-328. (in Chinese with English abstract)
Liu Y, Liu X M, Hu Z C,et al. 2007. Evaluation of accuracy and long-term stability of determination of 37 trace elements in geological samples by ICP-MS.Acta Petrologica Sinica,23(5):1203-1210. (in Chinese with English abstract)
Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids.Geological Society of America Bulletin,101(5):635-643.
Meng E, Xu W L, Yang D B,et al. 2011. Zircon U-Pb chronology, geochemistry of Mesozoic volcanic rocks from the Lingquan basin in Manzhouli area, and its tectonic implications.Acta Petrologica Sinica,27(4):1209-1226. (in Chinese with English abstract)
Nie F J, Liu Y, Liu Y F,et al. 2011. Ore-forming processes of silver-polymetallic deposits occurring within Tsav-Jiawula region along China-Mongolian border.Journal of Jilin University(Science Edition),41:1715-1725. (in Chinese with English abstract)
Pearce J A, Harris N B W, Tindle A C. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks.Journal of Petrology,25:956-983.
Poitrasson F, Duthou J L, Pin C. 1995. The relationship between petrology and Nb isotopes as evidence for contrasting anorogenic granite genesis:example for the Corsican Province (SE France).Journal of Petrology,36:1251-1274.
Safonova I Y, Santosh M. 2014. Accretionary complexes in the Asia-Pacific region:tracing archives of ocean plate stratigraphy and tracking mantle plumes.Gondwana Research,25:126-158.
Schmitt A K, Emmermann R, Trumbull R B,et al. 2000. Petrogenesis and 40Ar/39Ar geochronology of the Brandberg Complex, Namibia:evidence for a major mantle contribution in metaluminous and peralkaline granites.Journal of Petrology,41:1207-1239.
Sengör A M C, Natal'in B A, Burtman V S. 1993. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia.Nature,364:299-307.
Shao J A, Liu F T, Chen H,et al. 2001. Relationship between Mesozoic magmatism and subduction in Da Hinggan-Yanshan area.Acta Geololica Sinica,75:56-63.
Skjerlie K P, Johnston A D. 1993. Fluid-absent melting behavior of F-rich tonalitic gneiss at mid-crustal pressures:implications for the generation of anorogenic granites.Journal of Petrology,34:785-815.
Sun D Y, Gou J, Ren Y S,et al. 2011. Zircon U-Pb dating and study on geochemistry of volcanic rocks in Manitu Formation from southern Manchuria, Inner Mongolia.Acta Petrologica Sinica,10:3083-3094. (in Chinese with English abstract)
Sun M D, Chen H L, Zhang F Q,et al. 2013. A 100 Ma bimodal composite dyke complex in the Jiamusi Block, NE China:an indication for lithospheric extension driven by Paleo-Pacific roll-back.Lithos,162(3):317-330.
Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes//Saunders A D, Norry M J (eds). Implications for mantle composition and processes, magmatism in the ocean basins. London:Geological Society, Special Publication, 313-345.
Tang J, Xu W L, Wang F,et al. 2015. Geochronology, geochemistry, and deformation history of Late Jurassic-Early Cretaceous intrusive rocks in the Erguna Massif, NE China:constraints on the Late Mesozoic tectonic evolution of the Mongol-Okhotsk orogenic belt.Tectonophysics,658:91-110.
Trumbull R B, Harris C, Frindt S,et al. 2004. Oxygen and neodymium isotope evidence for source diversity in Cretaceous anorogenic granites from Namibia and implications for A-type granite genesis.Lithos,73:24-40.
Wang F, Zhou X H, Zhang L C,et al. 2006. Late Mesozoic volcanism in the Great Xing'an Range (NE China):timing and implications for the dynamic setting of NE Asia.Earth & Planetary Science Letters,251:179-198.
Wang T, Zheng Y D, Zhang J J,et al. 2011. Pattern and kinematic polarity of Late Mesozoic extension in continental NE Asia:perspectives from metamorphic core complexes.Tectonics,30:TC6007 doi:10.1029/2011TC002896.
Wang Y. 2009. Geochemistry of the Baicha A-type granite in Beijing Municipality:petrogenetic and tectonic implications.Acta Petrologica Sinica,25(1):13-24. (in Chinese with English abstract)
Wright J B. 1969. A simple alkalinity ratio and its application to questions of non-orogenic granite genesis.Geological Magazine,106(4):370-384.
Wu F Y, Lin J Q, Wide S A,et al. 2005. Nature and significance of the early Cretaceous giant igneous event in eastern China.Earth & Planetary Science Letters,233:103-119.
Wu G, Mei M, Gao F J,et al. 2010. Ore-forming fluid characteristics and genesis of silver-lead-zinc deposits in the Manzhouli area, Iner Mongolia, China.Earth Science Frontier,17:239-255. (in Chinese with English abstract)
Whalen J B, Currie K L, Chappell B W. 1987. A-type granites:geochemical characteristics, discrimination and petrogenesis.Contributions to Mineralogy & Petrology,95:407-419.
Xiao E, Qiu J S, Xu X S,et al. 2007. Geochronology and geochemistry of the Yaokeng alkaline granitic pluton in Zhejiang Province:petrogenetic and tectonic implications.Acta Petrologica Sinica,23(6):1431-1440. (in Chinese with English abstract)
Xie M Q. 2000. Tectonics of accreted terrane and driving mechanism. Beijing:Science Press, 1-256. (in Chinese)
Xu M J, Xu W L, Meng E,et al. 2011. LA-ICP-MS zircon U-Pb chronology and geochemistry of Mesozoic volcanic rocks from the Shanghulin-Xiangyang basin in Ergun area, northeastern Inner Mongolia.Geological Bulletin of China,30(9):1321-1338. (in Chinese with English abstract)
Xu W L, Pei F P, Wang F,et al. 2013. Spatial-temporal relationships of Mesozoic volcanic rocks in NE China:constraints on tectonic overprinting and transformations between multiple tectonic regimes.Journal of Asian Earth Sciences,74:167-193.
Ying J F, Zhou X H, Zhang L C,et al. 2010. Geochronological framework of Mesozoic volcanic rocks in the Great Xing'an Range, NE China, and their geodynamic implications.Journal of Asian Earth Sciences,39:786-793.
Zhang J H, Ge W C, Wu F Y,et al. 2008. Large-scale Early Cretaceous volcanic events in the northern Great Xing'an Range, Northeastern China. Lithos,102:138-157.
Zheng H, Sun X M, Zhu D F,et al. 2015. The structural characteristics, age of origin, and tectonic attribute of the Erguna Fault, NE China.Science China Earth Sciences,58(9):1553-1565.
Zonenshain L P, Kuzmin M I, Natapov L M. 1990. Geology of the USSR:a plate-tectonic synthesis. Washington, DC:AGU, 97-108.
Zorin Y A. 1999. Geodynamics of the western part of the Mongolia-Okhotsk collisional belt, Trans-Baikal region (Russia) and Mongolia.Tectonophysics,306:33-56.
�������������
1��WEI Chunxia, WEI Xu, ZHU Weigang, XU Wenliang.Petrogenesis of Early Cretaceous hornblende gabbro in Khanka Massif: evidence from geochronology and geochemistry[J]. Global Geology, 2018,21(3): 166-176
2��SONG Kai, DING Qingfeng, ZHANG Qiang.Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of Carnian Huanglonggou granodiorites inWulonggou area of Eastern Kunlun Orogen, NW China[J]. Global Geology, 2018,21(2): 91-107

Copyright by Global Geology