[an error occurred while processing this directive] Global Geology 2018, 21(3) 166-176 DOI:   10.3969/j.issn.1673-9736.2018.03.02  ISSN: 1673-9736 CN: 22-1371/P

����Ŀ¼ | ����Ŀ¼ | ������� | �߼�����                                                            [��ӡ��ҳ]   [�ر�]
����
��չ����
������Ϣ
Supporting info
PDF(1776KB)
[HTMLȫ��]
�����[PDF]
�����
�����뷴��
�ѱ����Ƽ�������
�����ҵ����
�������ù�����
����
Email Alert
���·���
���������Ϣ
���Ĺؼ����������
Khanka Massif
Early Cretaceous
hornblende gabbro
zircon U-Pb geochronology
geochemistry
petrogenesis
���������������
PubMed
Petrogenesis of Early Cretaceous hornblende gabbro in Khanka Massif: evidence from geochronology and geochemistry
WEI Chunxia, WEI Xu, ZHU Weigang, XU Wenliang
College of Earth Sciences, Jilin University, Changchun 130061, China
ժҪ�� The authors report zircon U-Pb geochronological, whole-rock geochemical and zircon Lu-Hf isotope data for the hornblende gabbro within the Khanka Massif, with the aim of constraining its formation time and petrogenesis. The zircon U-Pb dating shows that 206Pb/238Pb ages of zircons from the hornblende gabbro range from 120 to 129 Ma, yielding a weighted mean age of 123±2 Ma, i.e., the Early Cretaceous. The hornblende gabbro has SiO2 of 44.77%-46.58% and belongs to the tholeiitic series on FeOt/MgO-SiO2 diagram. It displays a right-inclined REE pattern with (La/Yb)N ratios of 3.44 to 4.42. The trace element spidergram shows that they are enriched in large ion lithophile elements (LILE) such as Rb, Th, U, K and Pb, and depleted in high field strength elements (HFSE) such as Nb, Ta, Ti and P, indicating an affinity to arc igneous rocks. The εHf(t) values of zircons vary from -2.6 to +3.9 and Hf model ages (TDM1) range from 622 to 883 Ma. These geochemical characteristics indicate that primary magma of the hornblende gabbro could be derived from partial melting of young mantle material accreted during the Neoproterozoic. Combined with the Early Cretaceous igneous rock assemblages in NE Asia. It is concluded that the hornblende gabbro formed in an active continental margin related to the westward subduction of the Paleo-Pacific Plate beneath the Khanka Massif.
�ؼ����� Khanka Massif   Early Cretaceous   hornblende gabbro   zircon U-Pb geochronology   geochemistry   petrogenesis  
Petrogenesis of Early Cretaceous hornblende gabbro in Khanka Massif: evidence from geochronology and geochemistry
WEI Chunxia, WEI Xu, ZHU Weigang, XU Wenliang
College of Earth Sciences, Jilin University, Changchun 130061, China
Abstract: The authors report zircon U-Pb geochronological, whole-rock geochemical and zircon Lu-Hf isotope data for the hornblende gabbro within the Khanka Massif, with the aim of constraining its formation time and petrogenesis. The zircon U-Pb dating shows that 206Pb/238Pb ages of zircons from the hornblende gabbro range from 120 to 129 Ma, yielding a weighted mean age of 123±2 Ma, i.e., the Early Cretaceous. The hornblende gabbro has SiO2 of 44.77%-46.58% and belongs to the tholeiitic series on FeOt/MgO-SiO2 diagram. It displays a right-inclined REE pattern with (La/Yb)N ratios of 3.44 to 4.42. The trace element spidergram shows that they are enriched in large ion lithophile elements (LILE) such as Rb, Th, U, K and Pb, and depleted in high field strength elements (HFSE) such as Nb, Ta, Ti and P, indicating an affinity to arc igneous rocks. The εHf(t) values of zircons vary from -2.6 to +3.9 and Hf model ages (TDM1) range from 622 to 883 Ma. These geochemical characteristics indicate that primary magma of the hornblende gabbro could be derived from partial melting of young mantle material accreted during the Neoproterozoic. Combined with the Early Cretaceous igneous rock assemblages in NE Asia. It is concluded that the hornblende gabbro formed in an active continental margin related to the westward subduction of the Paleo-Pacific Plate beneath the Khanka Massif.
Keywords: Khanka Massif   Early Cretaceous   hornblende gabbro   zircon U-Pb geochronology   geochemistry   petrogenesis  
�ո����� 2018-07-24 �޻����� 2018-08-14 ����淢������  
DOI: 10.3969/j.issn.1673-9736.2018.03.02
������Ŀ:

Supported by National Natural Science Foundation of China (No.41330206).

ͨѶ����: XU Wenliang
���߼��:
����Email: xuwl@jlu.edu.cn

�ο����ף�
Condie K C. 1998. Episodic continental growth and supercontinents:a mantle avalanche connection. Earth & Planetary Science Letters,163(1/4):97-108.
Frey F A, Green D H, Roy S D. 1978. Integrated models of basalt petrogenesis:a study of quartz tholeiites to olivine Melilitites from South Eastern Australia utilizing geochemical and experimental petrological data.Journal of Petrology,19(3):463-513.
Ge W C, Lin Q, Sun D Y,et al. 1999. Geochemical characteristics of the Mesozoic basalts in Da Hinggan Ling:evidence of the mantle-crust interaction.Acta Petrologica Sinica,15(3):397-407. (in Chinese with English abstract)
Gill J B. 1981. Orogenic andesites and plate tectonics. New York:Springer, 277-278.
Grove T L, Donnelly-Nolan J M. 1986. The evolution of young silicic lavas at Medicine Lake Volcano, California:implications for the origin of compositional gaps in calc-alkaline series lavas.Contributions to Mineralogy and Petrology,92(3):281-302.
Guo H Y. 2010. Division and correlation of tectonic units in the adjacent region of China northeast and far east of Russia:master's degree thesis. Changchun:Jilin University. (in Chinese with English abstract)
Jahn B M, Zhang Z Q. 1984. Archean granulite gneisses from eastern Hebei Province, China:rare earth geochemistry and tectonic implications.Contributions to Mineralogy and Petrology,85(3):224-243.
Jing H X, Sun D Y, Gou J,et al. 2015. Chronology, geochemistry and Hf isotope of granite from southern Xingkai block.Earth Science Journal of China University of Geosciences),40(6):982-994. (in Chinese with English abstract)
Ji Z, Ge W C,Yang H,et al. 2015. Chronology and geochemistry of volcanic rocks in the Ebo Formation of the Manketou Formation in the middle section of the Daxing'an Mountains.Journal of Jilin University (Earth Science Edition).40(6):982-994. (in Chinese with English abstract)
Kelemen P B, Hangh J K, Greene A R. 2003. One view of the geochemistry ofsubduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust.Treatise on Geochemistry,3:593-659.
Liu Y J, Zhang X Z, Jin W,et al.2010. Late Paleozoic tectonic evolution in northeast China.Geology in China,37(4):943-951. (in Chinese with English abstract)
Martin H, Smithies R H, Rapp R,et al. 2005. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid:relationships and some implications for crustal evolution.Lithos,79(1):1-24.
Meng E, Xu W L, Pei F P,et al. 2011. Middle Devonian volcanism in eastern Heilongjiang Province and its tectonic implications:constraints from petro-geochemistry, zircon U-Pb chronology and Sr-Nd-Hf isotopes.Acta Petrologica et Mineralogical,30(5):883-900. (in Chinese with English abstract)
Pei F P, Xu W L, Yang D B,et al. 2008. Mesozoic volcanic rocks in the southern Songliao Basin:Zircon U-Pb ages and their constraints on the nature of basin basement. Earth Science (Journal of China University of Geosciences),33(5):603-617. (in Chinese with English abstract)
Roex A P L. 1986. Geochemical correlation between southern African kimberlites and South Atlantic hotspots.Nature,324:243-245.
Stern R J. 2002. Subduction zones. Reviews of Geophysics,40(4) https://doi.org/10.1029/2001RG000108.
Sun D Y, Wu F Y, Zhang Y B,et al. 2004. The final closing time of the west Lamulun River-Changchun-Yanji plate suture zone.Journal of Jilin University(Earth Science Edition),34(2):175-183. (in Chinese with English abstract)
Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts; implications for mantle composition and processes.Geological Society London Special Publications,42(1):313-345.
Sun X M, Liu Y J, Sun Q C,et al. 2008. 40Ar/39Ar geochronology evidence of strike-slip movement in Dunhua-Mishan fault zone.Journal of Jilin University(Earth Science Edition),38(6):965-972. (in Chinese with English abstract)
Taylor S R, Mclennan S M. 1985. The continental crust:its composition and evolution.Journal of Geology,94(4):632-633.
Wang F, Xu W L, Ge W C, et al. 2016. The offset distance of the Dunhua-Mishan Fault:constraints from Paleozoic-Mesozoic magmatism within the Songnen-Zhangguangcai Range, Jiamusi, and Khanka massifs.Acta Petrologica Sinica,32(4):1129-1140. (in Chinese with English abstract)
Wang K Y, Yang R Y. 1983. The content of rare earth elements in gabbro from Baiyan Obo, inner Mongolia.Chinese Journal of Geology, (2):195-198. (in Chinese with English abstract)
Wang W, Tang J, Xu W L, et al. 2015. Geochronology and geochemistry of Early Jurassic volcanic rocks in the Erguna Massif, Northeast China:petrogenesis and implications for the tectonic evolution of the Mongol-Okhotsk suture belt.Lithos,218-219:73-86.
Wilson B M. 1989. Igneous petrogenesis:a global tectonic approach. London:Unwin Hyman Ltd, 507-530.
Wu F Y, Li X H, Zheng Y F, et al. 2007. Lu-Hf isotope system and their applications in petrology.Acta Petrologica Sinica,23(2):185-220. (in Chinese with English abstract)
Wu F Y, Sun D Y, Ge W C,et al. 2011. Geochronology of the Phanerozoic granitoids in northeastern China.Journal of Asian Earth Sciences,41(1):1-30.
Xu W L, Pei F P, Wang F, et al. 2013. Spatial-temporal relationships of Mesozoic volcanic rocks in NE China:constraints on tectonic overprinting and transformations between multiple tectonic regimes.Journal of Asian Earth Sciences,74(18):167-193.
Xu W L, Wang F, Pei F P,et al. 2013. Mesozoic tectonic regimes and regional ore-forming background in NE China:constraints from spatial and temporal variations of Mesozoic volcanic rock associations.Acta Petrologica Sinica,29(2):339-353. (in Chinese with English abstract)
Yang H, Zhang Y L, Chen H J,et al. 2012. Zircon U-Pb ages of Khanka Lake granitic complex and its geological implication.Global Geology,31(4):621-630. (in Chinese with English abstract)
Zhang X M. 2017. Proliferation and reconstruction process of deep crust in Xingkai block:evidence from Hf isotope composition of Zircon in granite.Bulletin of Mineralogy Petrology and Geochemistry,36:210. (in Chinese)
Zhou J B, Zeng W S, Cao J L,et al. 2012. The tectonic framework and evolution of the NE China:from ~500 Ma to ~180 Ma.Journal of Jilin University(Earth Science Edition),42(5):1298-1316+1329. (in Chinese with English abstract)
�������������
1��ZHENG Yuanhao, ZHAO Fengchen, WANG Li, LIU Jinlong, WU Qiong, TIAN Lidan, YIN Yue.U-Pb geochronology and geochemical characteristics of Liudaogou granodiorite in Linjiang, Jilin Province[J]. Global Geology, 2018,21(4): 221-231
2��YANG Baorong, MA Zhongxian, ZHANG Libin, WANG Xiaoyun, YAN Zhengping.Zircon U-Pb geochronology, geochemistry and geological significance of Xiarihamu granodiorite in Eastern Kunlun orogenic belt, Qinghai[J]. Global Geology, 2018,21(4): 209-220
3��HE Yanhui, ZHU Jianwei, ZHOU Yongheng.Sedimentary facies in Early Cretaceous strata,Shuangyashan Basin[J]. Global Geology, 2018,21(4): 232-236,251
4��SONG Kai, DING Qingfeng, ZHANG Qiang.Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of Carnian Huanglonggou granodiorites inWulonggou area of Eastern Kunlun Orogen, NW China[J]. Global Geology, 2018,21(2): 91-107
5��ZHENG Han, SUN Xiaomeng.Geochemistry, petrogenesis and tectonic implication of Early Cretaceous A-type rhyolites in Hailar Basin, NE China[J]. Global Geology, 2018,21(2): 77-90
6��YIN Yue, WANG Li, SUN Xia, JIANG Hefang, LI Liang.U-Pb geochronology, geochemistry and tectonic implications ofdiorite from Nangnimsan of Mehe in northern Da Hinggan Mountains[J]. Global Geology, 2017,20(4): 217-228
7��WANG Yang, SUN Fengyue, GAO Hongchang, HE Shuyue, QIAN Ye, XU Chenghan.Geochronology and geochemistry of Hutouya monzonitic granite of Qimantage, Qinghai[J]. Global Geology, 2017,20(4): 208-216
8��ZHANG Junyi, LI Bile, ZHAO Guoquan, NING Chuanqi, SUN Jing, WANG Guozhi.Geochemistry, U-Pb, Hf isotopic characteristics and geological significance of Zhalaxiageyong trachydacite in Tuotuohe area, Qinghai[J]. Global Geology, 2017,20(3): 153-163

Copyright by Global Geology