[an error occurred while processing this directive] Global Geology 2015, 18(3) 196-202 DOI:     ISSN: 1673-9736 CN: 22-1371/P

本期目录 | 下期目录 | 过刊浏览 | 高级检索                                                            [打印本页]   [关闭]
论文
扩展功能
本文信息
Supporting info
PDF(627KB)
[HTML全文]
参考文献[PDF]
参考文献
服务与反馈
把本文推荐给朋友
加入我的书架
加入引用管理器
引用本文
Email Alert
文章反馈
浏览反馈信息
本文关键词相关文章
 
本文作者相关文章
CHEN Lingna
ZENG Zhaofa
LI Jing and YUAN Yuan
PubMed
Article by Chen L
Article by Zeng Z
Article by Li JAYY
 
CHEN Lingna,ZENG Zhaofa,LI Jing and YUAN Yuan
 
摘要:  
关键词    
Research on weak signal extraction and noise removal for GPR data based on principal component analysis
CHEN Lingna,ZENG Zhaofa,LI Jing and YUAN Yuan
1. College of Geo- Exploration Science and Technology,Jilin University,Changchun 130026,China; 2. The Second Institute of Oceanography,State Oceanic Administration,Hangzhou 310012,China; 3. Key Laboratory of Submarine Geoscience,State Oceanic Administration,Hangzhou 310012,China
Abstract:

The ground penetrating radar (GPR) detection data is a wide band signal, always disturbed by some noise,such as ambient random noise and multiple reflection waves. The noise affects the target identification of underground medium seriously. A method based on principal component analysis (PCA) was proposed to ex- tract the target signal and remove the uncorrelated noise. According to the correlation of signal,the authors get the eigenvalues and corresponding eigenvectors by decomposing the covariance matrix of GPR data and make linear transformation for the GPR data to get the principal components (PCs). The lower- order PCs stand for the strong correlated target signals of the raw data,and the higher- order ones present the uncorrelated noise. Thus the authors can extract the target signal and filter uncorrelated noise effectively by the PCA. This method was demonstrated on real ultra- wideband through- wall radar data and simulated GPR data. Both of the results show that the PCA method can effectively extract the GPR target signal and remove the uncorrelated noise.

Keywords: ground penetrating radar   principal component analysis   target extraction   noise removing  
收稿日期  修回日期  网络版发布日期  
DOI:
基金项目:

 

通讯作者:
作者简介:
作者Email:

参考文献:
 
本刊中的类似文章
1.. [J]. Global Geology, 2024,27(4): 207-215
2.. [J]. Global Geology, 2024,27(4): 177-195
3.. [J]. Global Geology, 2024,27(4): 196-206
4.. [J]. Global Geology, 2024,27(4): 216-232
5.. [J]. Global Geology, 2024,27(3): 145-153
6.. [J]. Global Geology, 2024,27(3): 154-166
7.. [J]. Global Geology, 2024,27(3): 167-176
8.. [J]. Global Geology, 2024,27(3): 121-131
9.. [J]. Global Geology, 2024,27(3): 132-144
10.. [J]. Global Geology, 2024,27(2): 105-120
11.. [J]. Global Geology, 2024,27(2): 63-75
12.. [J]. Global Geology, 2024,27(2): 93-104
13.. [J]. Global Geology, 2024,27(2): 76-92
14.. [J]. Global Geology, 2024,27(1): 43-55
15.. [J]. Global Geology, 2024,27(1): 56-62

Copyright by Global Geology