[an error occurred while processing this directive] Global Geology 2022, 25(1) 60-68 DOI:     ISSN: 1673-9736 CN: 22-1371/P

本期目录 | 下期目录 | 过刊浏览 | 高级检索                                                            [打印本页]   [关闭]
论文
扩展功能
本文信息
Supporting info
PDF(436KB)
[HTML全文]
参考文献[PDF]
参考文献
服务与反馈
把本文推荐给朋友
加入我的书架
加入引用管理器
引用本文
Email Alert
文章反馈
浏览反馈信息
本文关键词相关文章
本文作者相关文章
PubMed
Article by Zhang LAZY
摘要
关键词
Object-oriented crop classification based on UAV remote sensing imagery
ZHANG Lan and ZHANG Yanhong
College of Geo-Exploration Science and Technology, Jilin University, Changchun 130026, China
Abstract: UAV remote sensing images have the advantages of high spatial resolution, fast speed, strong realtime performance, and convenient operation, etc., and have become a recently developed, vital means of acquiring surface information. It is an important research task for precision agriculture to make full use of the spectrum, texture, color and other characteristic information of crops, especially the spatial arrangement and structure information of features, to explore effective methods for the classification of multiple varieties of crops. In order to explore the applicability of the object-oriented method to achieve accurate classification of UAV high-resolution images, the paper used the object-oriented classification method in ENVI to classify the UAV high-resolution remote sensing image obtained from the orderly structured 28 species of crops in the test field, which mainly includes image segmentation and object classification. The results showed that the plots obtained after classification were continuous and complete, basically in line with the actual situation, and the overall accuracy of crop classification was 91.73%, with Kappa coefficient of 0.87. Compared with the crop planting area based on remote sensing interpretation and field survey, the area error of 17 species of crops in this study was controlled within 15%, which provides a basis for object-oriented crop classification of UAV remote sensing images.
Keywords: object-oriented classification   UAV remote sensing imagery   crop classification  
收稿日期  修回日期  网络版发布日期  
DOI:
基金项目:

通讯作者:
作者简介:
作者Email:

参考文献:
本刊中的类似文章
1..[J]. Global Geology, 2022,25(2): 69-83
2..[J]. Global Geology, 2022,25(2): 84-96
3..[J]. Global Geology, 2022,25(2): 97-108
4..[J]. Global Geology, 2022,25(2): 109-115
5..[J]. Global Geology, 2022,25(2): 116-125
6..[J]. Global Geology, 2022,25(2): 126-132
7..[J]. Global Geology, 2022,25(1): 11-15
8..[J]. Global Geology, 2022,25(1): 16-25
9..[J]. Global Geology, 2022,25(1): 34-40
10..[J]. Global Geology, 2022,25(1): 41-48
11..[J]. Global Geology, 2022,25(1): 49-59
12..[J]. Global Geology, 2022,25(1): 1-10
13..[J]. Global Geology, 2022,25(1): 26-33
14..[J]. Global Geology, 2021,24(4): 213-225
15..[J]. Global Geology, 2021,24(4): 226-238

Copyright by Global Geology