[an error occurred while processing this directive] Global Geology 2022, 25(2) 109-115 DOI:     ISSN: 1673-9736 CN: 22-1371/P

本期目录 | 下期目录 | 过刊浏览 | 高级检索                                                            [打印本页]   [关闭]
论文
扩展功能
本文信息
Supporting info
PDF(1589KB)
[HTML全文]
参考文献[PDF]
参考文献
服务与反馈
把本文推荐给朋友
加入我的书架
加入引用管理器
引用本文
Email Alert
文章反馈
浏览反馈信息
本文关键词相关文章
本文作者相关文章
PubMed
Article by Wang HAWQ
摘要
关键词
Prediction of surface subsidence in Changchun City based on LSTM network
WANG He and WU Qiong
College of Geo-Exploration Science and Technology, Jilin University, Changchun 130026, China
Abstract: Monitoring and predicting of urban surface subsidence are important for urban disaster prevention and mitigation. In this paper, the Long Short-Term Memory (LSTM) network was used to predict the surface subsidence process of Changchun City from 2018 to 2020 based on PS-InSAR monitoring data. The results show that the prediction error of 57.89% of PS points in the LSTM network was less than 1mm with the average error of 1.8 mm and the standard deviation of 2.8 mm. The accuracy and reliability of the prediction were better than regression analysis, time series analysis and grey model.
Keywords: LSTM neural network   surface subsidence   PS-InSAR  
收稿日期  修回日期  网络版发布日期  
DOI:
基金项目:

通讯作者:
作者简介:
作者Email:

参考文献:
本刊中的类似文章
1..[J]. Global Geology, 2022,25(2): 69-83
2..[J]. Global Geology, 2022,25(2): 84-96
3..[J]. Global Geology, 2022,25(2): 97-108
4..[J]. Global Geology, 2022,25(2): 116-125
5..[J]. Global Geology, 2022,25(2): 126-132
6..[J]. Global Geology, 2022,25(1): 11-15
7..[J]. Global Geology, 2022,25(1): 16-25
8..[J]. Global Geology, 2022,25(1): 34-40
9..[J]. Global Geology, 2022,25(1): 41-48
10..[J]. Global Geology, 2022,25(1): 49-59
11..[J]. Global Geology, 2022,25(1): 60-68
12..[J]. Global Geology, 2022,25(1): 1-10
13..[J]. Global Geology, 2022,25(1): 26-33
14..[J]. Global Geology, 2021,24(4): 213-225
15..[J]. Global Geology, 2021,24(4): 226-238

Copyright by Global Geology