[an error occurred while processing this directive] 世界地质 2020, 39(1) 30-44 DOI:   10.3969/j.issn.1004-5589.2020.01.003  ISSN: 1004-5589 CN: 22-1111/P

本期目录 | 下期目录 | 过刊浏览 | 高级检索                                                            [打印本页]   [关闭]
基础地质
扩展功能
本文信息
Supporting info
PDF(6865KB)
[HTML全文]
参考文献[PDF]
参考文献
服务与反馈
把本文推荐给朋友
加入我的书架
加入引用管理器
引用本文
Email Alert
文章反馈
浏览反馈信息
本文关键词相关文章
金云母
辉石岩
地幔交代作用
华北克拉通
硅酸盐熔体
本文作者相关文章
张珺杰
郭鹏远
孙普
陈懋卿
肖媛媛
PubMed
Article by Zhang J
Article by Guo P
Article by Sun P
Article by Chen M
Article by Xiao Y
内蒙古达里诺尔含金云母辉石岩的发现及其地质意义
张珺杰1,2,3, 郭鹏远1,2, 孙普1,2, 陈懋卿4, 肖媛媛1,2
1. 中国科学院海洋研究所, 山东青岛 266071;
2. 海洋地质与环境重点实验室(中国科学院), 山东青岛 266071;
3. 中国科学院大学, 北京 100049;
4. 天津大学表层地球系统科学研究院, 天津 300072
摘要: 对华北克拉通北缘达里诺尔地区鸽子山附近玄武岩中的含金云母辉石岩捕虏体进行了岩石学、矿物学的研究,并对其中的单斜辉石、斜方辉石、金云母和粒间熔体进行了原位微区主、微量元素分析。结果显示,单斜辉石和斜方辉石具有低的Mg#、Cr2O3和高的Al2O3含量,斜方辉石还具有高的MnO含量,这些特征表明辉石岩代表了交代熔体在地幔中冷却固结堆晶形成的岩脉。辉石岩中金云母、粒间熔体的出现及其不平衡的地球化学特征说明辉石岩形成以后又遭受到了多期次的硅酸盐熔体地幔交代作用。结晶出单斜辉石的母岩浆在蛛网图上具有K、Pb元素的弱负异常但不具有Nb、Ta、Ti元素的负异常,推测形成辉石岩的熔体可能来自软流圈地幔。粒间熔体的低SiO2,高MgO和FeO的特征指示其形成于地幔超基性岩的部分熔融,蛛网图上明显的K、Pb正异常以及Nb、Ta负异常说明其源区也存在俯冲沉积物的贡献。基于此,认为中国东部新生代岩石圈地幔经历了多期次地幔交代作用。
关键词 金云母   辉石岩   地幔交代作用   华北克拉通   硅酸盐熔体  
Discovery of phlogopite-bearing pyroxenites from Darinoor in Inner Mongolia and its geological implication
ZHANG Jun-jie1,2,3, GUO Peng-yuan1,2, SUN Pu1,2, CHEN Mao-qing4, XIAO Yuan-yuan1,2
1. Institute of Oceanology, Chinese Academy of Science, Qingdao 266071, Shandong, China;
2. Key Laboratory of Marine Geology and Environment(Chinese Academy of Science), Qingdao 266071, Shandong, China;
3. University of Chinese Academy of Science, Beijing 100049, China;
4. Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
Abstract: This study reports the petrology and mineralogy characteristics of the phlogopite-bearing pyroxenites from the basalt near Gezishan in Darinoor in the northern margin of North China Craton, and in-situ major and trace element compositions of clinopyroxenes, orthopyroxenes, phlogopites and intergranular melts in the pyroxenites. The results show that clinopyroxenes and orthopyroxenes are characterized by low Mg# and Cr2O3 content and high Al2O3 content, and the orthopyroxenes also show high MnO content, which indicates that these pyroxenites were segregated from metasomatic melts in upper mantle. The appearance of phlogopites and intergranular melts in pyroxenite, and their unbalanced geochemical characteristics indicate that the pyroxenite was metasomatized by silicate melt after its formation. The geochemical characteristics of the calculated parental magma of clinopyroxenes, such as the weakly negative anomalies of K, Pb and lacking negative anomalies of Nb, Ta, Ti in the spider diagram, indicate that their mantle source was asthenosphere mantle. The geochemical characteristics of intergranular melts, such as the lower SiO2 concentration and higher content of MgO and FeO, indicate their source was the partial melting of ultrabasic rocks from mantle. And the positive anomalies of K, Pb and negative anomalies of Nb, Ta in spider-gram of intergranular melts indicate the contribution of subducted terrigenous sediments in their mantle source.Therefore, it is concluded that there were multi-stage metasomatisms in the Cenozoic lithosphere mantle in eastern China.
Keywords: phlogopite   pyroxenite   mantle metasomatism   North China Craton   silicate melt  
收稿日期 2019-12-16 修回日期 2020-01-20 网络版发布日期  
DOI: 10.3969/j.issn.1004-5589.2020.01.003
基金项目:

国家自然科学基金(41776067)

通讯作者: 肖媛媛(1983),女,副研究员,主要从事岩石地球化学方向研究。E-mail:yuanyuan.xiao@qdio.ac.cn
作者简介:
作者Email: yuanyuan.xiao@qdio.ac.cn

参考文献:
[1] Lloyd F E, Bailey D K. Light element metasomatism of the continental mantle:the the evidence and the consequences[M]//Physics and Chemistry of the Earth. Oxford:Pergamon, 1975:389-416.
[2] Wass S Y, Roge N W. Mantle metasomatism-precursor to continental alkaline volcanism[J]. Geochimica et Cosmochimica Acta, 1980, 44(11):1811-1823.
[3] Hawkesworth C J, Kempton P D, Rogers N W, et al. Continental mantle lithosphere, and shallow level enrichment processes in the Earth's mantle[J]. Earth and Planetary Science Letters, 1990, 96(3):256-268.
[4] O'Reilly S Y, Griffin W L. Mantle metasomatism[M]//Metasomatism and the chemical transformation of rock. Berlin, Heidelberg:Springer, 2013:471-533.
[5] Harte B. Mantle peridotites and processes:the kimberlite sample[M]//Hawkesworth C J, Norry M J. Continental basalts and mantle xenoliths, U.K.:Shiva, 1983:46-91.
[6] Menzies M, Kempton P, Dungan M. Interaction of continental lithosphere and asthenospheric melts below the Geronimo volcanic field, Arizona, U.S.A[J]. Journal of Petrology, 1985, 26(3):663-693.
[7] Dawson J B. Contrasting types of upper-mantle metasomatism?[M]//Kornprobst J. Developments in Petrology. Amsterdam:Elsevier, 1984:289-294.
[8] Bodinier J L, Guiraud M, Fabriés J, et al. Petrogenesis of layered pyroxenites from the Lherz, Freychinéde and Prades ultramafic bodies (Ariége, French Pyrénées)[J]. Geochimica et Cosmochimica Acta, 1987, 51(2):279-290.
[9] Xu Y G. Evidence for crustal components in the mantle and constraints on crustal recycling mechanisms:pyroxenite xenoliths from Hannuoba, North China[J]. Chemical Geology, 2002, 182(2):301-322.
[10] Liu Y S, Gao S, Lee C, et al. Melt-peridotite interactions:links between garnet pyroxenite and high-Mg# signature of continental crust[J]. Earth and Planetary Science Letters, 2005, 234(1/2):39-57.
[11] 张亚玲, 徐义刚. 辉石岩:高压结晶还是再循环洋壳?[J]. 高校地质学报, 2012, 18(1):74-87. ZHANG Ya-ling, XU Yi-gang. Pyroxenites:high-pressure segregates or recycled oceanic crust?[J]. Geological Journal of China Universities, 2012, 18(1):74-87.
[12] Fan W M, Zhang H F, Baker J, et al. On and off the North China Craton:where is the Archaean keel?[J]. Journal of Petrology, 2000, 41(7):933-950.
[13] Rudnick R L, Gao S, Ling W L, et al. Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China Craton[J]. Lithos, 2004, 77(1):609-637.
[14] 赵新苗, 张宏福, 朱祥坤, 等. 华北中、新生代岩石圈地幔的交代作用:含金云母地幔岩提供的证据[J]. 岩石学报, 2007,23(6):1281-1293. ZHAO Xin-miao, ZHANG Hong-fu, ZHU Xiang-kun, et al. Metasomatism of Mesozoic and Cenozoic lithosperic mantle beneath the North China Craton:evidence from phlogopite-bearing mantle xenoliths[J]. Acta Petrologica Sinica, 2007,23(6):1281-1293.
[15] Guo P Y, Niu Y L, Sun P, et al. The origin of Cenozoic basalts from central Inner Mongolia, East China:the consequence of recent mantle metasomatism genetically associated with seismically observed paleo-Pacific slab in the mantle transition zone[J]. Lithos, 2016, 240-243:104-118.
[16] Sun P, Niu Y, Guo P, et al. Elemental and Sr-Nd-Pb isotope geochemistry of the Cenozoic basalts in Southeast China:insights into their mantle sources and melting processes[J]. Lithos, 2017, 272-273:16-30.
[17] Sun P, Niu Y L, Guo P Y, et al. Multiple mantle metasomatism beneath the Leizhou Peninsula, South China:evidence from elemental and Sr-Nd-Pb-Hf isotope geochemistry of the Late Cenozoic volcanic rocks[J]. International Geology Review, 2019, 61(14):1768-1785.
[18] Meng F X, Gao S, Niu Y L, et al. Mesozoic-Cenozoic mantle evolution beneath the North China Craton:a new perspective from Hf-Nd isotopes of basalts[J]. Gondwana Research, 2015, 27(4):1574-1585.
[19] Niu Y L. Generation and evolution of basaltic magamas:some basic concepts and a new view on the origin of Mesozoix-Cenozoic basaltic volcanism in eastern China[J]. Geological Journal of China Universities, 2005, 11(1):9-46.
[20] Liu Y S, Gao S, Kelemen P B, et al. Recycled crust controls contrasting source compositions of Mesozoic and Cenozoic basalts in the North China Craton[J]. Geochimica et Cosmochimica Acta, 2008, 72(9):2349-2376.
[21] Ho K S, Liu Y, Chen J C, et al. Elemental and Sr-Nd-Pb isotopic compositions of Late Cenozoic Abaga basalts, Inner Mongolia:implications for petrogenesis and mantle process[J]. Geochemical Journal, 2008, 42(4):339-357.
[22] Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1):34-43.
[23] 刘显凡, 孙传敏, 陶专, 等. 矿物学简明教程[M]. 北京:地质出版社, 2010:1-280. LIU Xian-fan, SUN Chuan-min, TAO Zhuan, et al. A concise course in mineralogy[M]. Beijing:Geological Publishong House, 2010:1-280.
[24] Zou D Y, Liu Y S, Hu Z C, et al. Pyroxenite and peridotite xenoliths from Hexigten, Inner Mongolia:insights into the Paleo-Asian Ocean subduction-related melt/fluid-peridotite interaction[J]. Geochimica et Cosmochimica Acta, 2014, 140:435-454.
[25] Zhang H F, Nakamura E, Kobayashi K, et al. Recycled crustal melt injection into lithospheric mantle:implication from cumulative composite and pyroxenite xenoliths[J]. International Journal of Earth Sciences, 2010, 99(6):1167-1186.
[26] 宗克清, 刘勇胜, 高山, 等. 汉诺坝辉石岩包体中单斜辉石的微区微量元素组成特征及其地球动力学意义[J]. 岩石学报, 2005,21(3):909-920. ZONG Ke-qing, LIU Yong-sheng, GAO Shan, et al. In situ trace elemental compositions and geodynamic significance of clinopyroxene in pyroxenite xenoliths from Hannuoba[J]. Acta Petrologica Sinica, 2005, 21(3):909-920.
[27] 杜星星, 樊祺诚. 汉诺坝捕虏体辉石岩和麻粒岩的成因探讨[J]. 岩石学报, 2011, 27(10):2927-2936. DU Xing-xing, FAN Qi-cheng. Discussion on genesis of pyroxenite and granulite xenoliths from Hannuoba[J]. Acta Petrologica Sinica, 2011, 27(10):2927-2936.
[28] 刘讲锋, 徐义刚. 河北阳原新生代玄武岩中两类辉石岩包体的矿物学和地球化学特征[J]. 大地构造与成矿学, 2006,30(1):52-62. LIU Jiang-feng, XU Yi-gang. Mineral chemistry and geochemistry of the two suites of pyroxenite xenoliths in Cenozoic basalts from Yangyuan, Hebei[J]. Geotectonica et Metallogenia, 2006,30(1):52-62.
[29] 邹东雅. 橄榄岩-熔体相互作用对岩石圈地幔的改造:博士学位论文[D].西安:西北大学,2017. ZOU Dong-ya. Transformation of the lithospheric mantle through peridotite-melt interaction:evidence from the mantle xenoliths in the northern margin of the North China Craton:docter's degree thesis[D].Xi'an:Northwest University, 2017.
[30] Wilkinson J F G, Maitre R W. Upper mantle amphiboles and micas and TiO2, K2O, and P2O5 abundances and 100 Mg/(Mg+Fe2+) ratios of common basalts and andesites:implications for modal mantle metasomatism and undepleted mantle compositions[J]. Journal of Petrology, 1987, 28(1):37-73.
[31] Ionov D A, Griffin W L, O'reilly S Y. Volatile-bearing minerals and lithophile trace elements in the upper mantle[J]. Chemical Geology, 1997, 141(3):153-184.
[32] Ionov D A, Hofmann A W. Nb-Ta-rich mantle amphiboles and micas:implications for subduction-related metasomatic trace element fractionations[J]. Earth and Planetary Science Letters, 1995, 131(3/4):341-356.
[33] Sun S S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1):313-345.
[34] Downes H. Origin and significance of spinel and garnet pyroxenites in the shallow lithospheric mantle:ultramafic massifs in orogenic belts in western Europe and NW Africa[J]. Lithos, 2007, 99(1/2):1-24.
[35] Yu S Y, Xu Y G, Ma J L, et al. Remnants of oceanic lower crust in the subcontinental lithospheric mantle:trace element and Sr-Nd-O isotope evidence from aluminous garnet pyroxenite xenoliths from Jiaohe, Northeast China[J]. Earth and Planetary Science Letters, 2010, 297(3):413-422.
[36] Niu Y L, O'hara M J. Origin of ocean island basalts:a new perspective from petrology, geochemistry, and mineral physics considerations[J]. Journal of Geophysical Research:Solid Earth, 2003, 108(B4):1-19.
[37] Niu Y L. The origin of alkaline lavas[J]. Science, 2008, 320(5878):883-884.
[38] Niu Y L, Wilson M, Humphreys E R, et al. A trace element perspective on the source of ocean island basalts (OIB) and fate of subducted ocean crust (SOC) and mantle lithosphere (SML)[J]. Episodes, 2012, 35(2):310-327.
[39] Pilet S, Baker M B, Stolper E M. Metasomatized lithosphere and the origin of alkaline lavas[J]. Science 2008, 320(5878):916-919.
[40] Latourrette T, Hervig R, Holloway J. Trace element partitioning between amphibole, phlogopite, and basanite melt[J]. Earth and Planetary Science Letters, 1995, 135(1):13-30.
[41] Adam J, Green T. Trace element partitioning between mica-and amphibole-bearing garnet lherzolite and hydrous basanitic melt:1. experimental results and the investigation of controls on partitioning behaviour[J]. Contributions to Mineralogy and Petrology, 2006, 152(1):1-17.
[42] White W M. Geochemistry[M]. Oxford:Wiley-Blackwell, 2013:1-660.
[43] Niu Y, Waggoner D G, Sinton J M, et al. Mantle source heterogeneity and melting processes beneath seafloor spreading centers:the East Pacific Rise, 18°-19°S[J]. Journal of Geophysical Research:Solid Earth, 1996, 101(B12):27711-27733.
[44] Hart S R, Dunn T. Experimental cpx/melt partitioning of 24 trace elements[J]. Contributions to Mineralogy and Petrology, 1993, 113(1):1-8.
[45] Wu D, Liu Y, Chen C, et al. In-situ trace element and Sr isotopic compositions of mantle xenoliths constrain two-stage metasomatism beneath the northern North China Craton[J]. Lithos, 2017, 288-289:338-351.
本刊中的类似文章
1.韩吉龙, 王清海.华北克拉通辽东半岛新元古代早期基性岩浆活动: 辉绿岩墙年代学和岩石地球化学证据[J]. 世界地质, 2016,18(4): 886-
2.韩吉龙, 王清海.华北克拉通辽东半岛新元古代早期基性岩浆活动: 辉绿岩墙年代学和岩石地球化学证据[J]. 世界地质, 2015,34(4): 886-902
3.王庆龙, 金巍, 蔡丽斌, 崔夏红, 张乔, 吴朝盛.辽西兴城地区新太古代花岗质杂岩特征与成因[J]. 世界地质, 2012,31(3): 479-492

Copyright by 世界地质