世界地质    2020 39 (1): 30-44   ISSN: 1004-5589  CN: 22-1111/P  

内蒙古达里诺尔含金云母辉石岩的发现及其地质意义
张珺杰1,2,3, 郭鹏远1,2, 孙普1,2, 陈懋卿4, 肖媛媛1,2
1. 中国科学院海洋研究所, 山东青岛 266071;
2. 海洋地质与环境重点实验室(中国科学院), 山东青岛 266071;
3. 中国科学院大学, 北京 100049;
4. 天津大学表层地球系统科学研究院, 天津 300072
收稿日期 2019-12-16  修回日期 2020-01-20  网络版发布日期 null
参考文献  [1] Lloyd F E, Bailey D K. Light element metasomatism of the continental mantle:the the evidence and the consequences[M]//Physics and Chemistry of the Earth. Oxford:Pergamon, 1975:389-416.
[2] Wass S Y, Roge N W. Mantle metasomatism-precursor to continental alkaline volcanism[J]. Geochimica et Cosmochimica Acta, 1980, 44(11):1811-1823.
[3] Hawkesworth C J, Kempton P D, Rogers N W, et al. Continental mantle lithosphere, and shallow level enrichment processes in the Earth's mantle[J]. Earth and Planetary Science Letters, 1990, 96(3):256-268.
[4] O'Reilly S Y, Griffin W L. Mantle metasomatism[M]//Metasomatism and the chemical transformation of rock. Berlin, Heidelberg:Springer, 2013:471-533.
[5] Harte B. Mantle peridotites and processes:the kimberlite sample[M]//Hawkesworth C J, Norry M J. Continental basalts and mantle xenoliths, U.K.:Shiva, 1983:46-91.
[6] Menzies M, Kempton P, Dungan M. Interaction of continental lithosphere and asthenospheric melts below the Geronimo volcanic field, Arizona, U.S.A[J]. Journal of Petrology, 1985, 26(3):663-693.
[7] Dawson J B. Contrasting types of upper-mantle metasomatism?[M]//Kornprobst J. Developments in Petrology. Amsterdam:Elsevier, 1984:289-294.
[8] Bodinier J L, Guiraud M, Fabriés J, et al. Petrogenesis of layered pyroxenites from the Lherz, Freychinéde and Prades ultramafic bodies (Ariége, French Pyrénées)[J]. Geochimica et Cosmochimica Acta, 1987, 51(2):279-290.
[9] Xu Y G. Evidence for crustal components in the mantle and constraints on crustal recycling mechanisms:pyroxenite xenoliths from Hannuoba, North China[J]. Chemical Geology, 2002, 182(2):301-322.
[10] Liu Y S, Gao S, Lee C, et al. Melt-peridotite interactions:links between garnet pyroxenite and high-Mg# signature of continental crust[J]. Earth and Planetary Science Letters, 2005, 234(1/2):39-57.
[11] 张亚玲, 徐义刚. 辉石岩:高压结晶还是再循环洋壳?[J]. 高校地质学报, 2012, 18(1):74-87. ZHANG Ya-ling, XU Yi-gang. Pyroxenites:high-pressure segregates or recycled oceanic crust?[J]. Geological Journal of China Universities, 2012, 18(1):74-87.
[12] Fan W M, Zhang H F, Baker J, et al. On and off the North China Craton:where is the Archaean keel?[J]. Journal of Petrology, 2000, 41(7):933-950.
[13] Rudnick R L, Gao S, Ling W L, et al. Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China Craton[J]. Lithos, 2004, 77(1):609-637.
[14] 赵新苗, 张宏福, 朱祥坤, 等. 华北中、新生代岩石圈地幔的交代作用:含金云母地幔岩提供的证据[J]. 岩石学报, 2007,23(6):1281-1293. ZHAO Xin-miao, ZHANG Hong-fu, ZHU Xiang-kun, et al. Metasomatism of Mesozoic and Cenozoic lithosperic mantle beneath the North China Craton:evidence from phlogopite-bearing mantle xenoliths[J]. Acta Petrologica Sinica, 2007,23(6):1281-1293.
[15] Guo P Y, Niu Y L, Sun P, et al. The origin of Cenozoic basalts from central Inner Mongolia, East China:the consequence of recent mantle metasomatism genetically associated with seismically observed paleo-Pacific slab in the mantle transition zone[J]. Lithos, 2016, 240-243:104-118.
[16] Sun P, Niu Y, Guo P, et al. Elemental and Sr-Nd-Pb isotope geochemistry of the Cenozoic basalts in Southeast China:insights into their mantle sources and melting processes[J]. Lithos, 2017, 272-273:16-30.
[17] Sun P, Niu Y L, Guo P Y, et al. Multiple mantle metasomatism beneath the Leizhou Peninsula, South China:evidence from elemental and Sr-Nd-Pb-Hf isotope geochemistry of the Late Cenozoic volcanic rocks[J]. International Geology Review, 2019, 61(14):1768-1785.
[18] Meng F X, Gao S, Niu Y L, et al. Mesozoic-Cenozoic mantle evolution beneath the North China Craton:a new perspective from Hf-Nd isotopes of basalts[J]. Gondwana Research, 2015, 27(4):1574-1585.
[19] Niu Y L. Generation and evolution of basaltic magamas:some basic concepts and a new view on the origin of Mesozoix-Cenozoic basaltic volcanism in eastern China[J]. Geological Journal of China Universities, 2005, 11(1):9-46.
[20] Liu Y S, Gao S, Kelemen P B, et al. Recycled crust controls contrasting source compositions of Mesozoic and Cenozoic basalts in the North China Craton[J]. Geochimica et Cosmochimica Acta, 2008, 72(9):2349-2376.
[21] Ho K S, Liu Y, Chen J C, et al. Elemental and Sr-Nd-Pb isotopic compositions of Late Cenozoic Abaga basalts, Inner Mongolia:implications for petrogenesis and mantle process[J]. Geochemical Journal, 2008, 42(4):339-357.
[22] Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1):34-43.
[23] 刘显凡, 孙传敏, 陶专, 等. 矿物学简明教程[M]. 北京:地质出版社, 2010:1-280. LIU Xian-fan, SUN Chuan-min, TAO Zhuan, et al. A concise course in mineralogy[M]. Beijing:Geological Publishong House, 2010:1-280.
[24] Zou D Y, Liu Y S, Hu Z C, et al. Pyroxenite and peridotite xenoliths from Hexigten, Inner Mongolia:insights into the Paleo-Asian Ocean subduction-related melt/fluid-peridotite interaction[J]. Geochimica et Cosmochimica Acta, 2014, 140:435-454.
[25] Zhang H F, Nakamura E, Kobayashi K, et al. Recycled crustal melt injection into lithospheric mantle:implication from cumulative composite and pyroxenite xenoliths[J]. International Journal of Earth Sciences, 2010, 99(6):1167-1186.
[26] 宗克清, 刘勇胜, 高山, 等. 汉诺坝辉石岩包体中单斜辉石的微区微量元素组成特征及其地球动力学意义[J]. 岩石学报, 2005,21(3):909-920. ZONG Ke-qing, LIU Yong-sheng, GAO Shan, et al. In situ trace elemental compositions and geodynamic significance of clinopyroxene in pyroxenite xenoliths from Hannuoba[J]. Acta Petrologica Sinica, 2005, 21(3):909-920.
[27] 杜星星, 樊祺诚. 汉诺坝捕虏体辉石岩和麻粒岩的成因探讨[J]. 岩石学报, 2011, 27(10):2927-2936. DU Xing-xing, FAN Qi-cheng. Discussion on genesis of pyroxenite and granulite xenoliths from Hannuoba[J]. Acta Petrologica Sinica, 2011, 27(10):2927-2936.
[28] 刘讲锋, 徐义刚. 河北阳原新生代玄武岩中两类辉石岩包体的矿物学和地球化学特征[J]. 大地构造与成矿学, 2006,30(1):52-62. LIU Jiang-feng, XU Yi-gang. Mineral chemistry and geochemistry of the two suites of pyroxenite xenoliths in Cenozoic basalts from Yangyuan, Hebei[J]. Geotectonica et Metallogenia, 2006,30(1):52-62.
[29] 邹东雅. 橄榄岩-熔体相互作用对岩石圈地幔的改造:博士学位论文[D].西安:西北大学,2017. ZOU Dong-ya. Transformation of the lithospheric mantle through peridotite-melt interaction:evidence from the mantle xenoliths in the northern margin of the North China Craton:docter's degree thesis[D].Xi'an:Northwest University, 2017.
[30] Wilkinson J F G, Maitre R W. Upper mantle amphiboles and micas and TiO2, K2O, and P2O5 abundances and 100 Mg/(Mg+Fe2+) ratios of common basalts and andesites:implications for modal mantle metasomatism and undepleted mantle compositions[J]. Journal of Petrology, 1987, 28(1):37-73.
[31] Ionov D A, Griffin W L, O'reilly S Y. Volatile-bearing minerals and lithophile trace elements in the upper mantle[J]. Chemical Geology, 1997, 141(3):153-184.
[32] Ionov D A, Hofmann A W. Nb-Ta-rich mantle amphiboles and micas:implications for subduction-related metasomatic trace element fractionations[J]. Earth and Planetary Science Letters, 1995, 131(3/4):341-356.
[33] Sun S S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1):313-345.
[34] Downes H. Origin and significance of spinel and garnet pyroxenites in the shallow lithospheric mantle:ultramafic massifs in orogenic belts in western Europe and NW Africa[J]. Lithos, 2007, 99(1/2):1-24.
[35] Yu S Y, Xu Y G, Ma J L, et al. Remnants of oceanic lower crust in the subcontinental lithospheric mantle:trace element and Sr-Nd-O isotope evidence from aluminous garnet pyroxenite xenoliths from Jiaohe, Northeast China[J]. Earth and Planetary Science Letters, 2010, 297(3):413-422.
[36] Niu Y L, O'hara M J. Origin of ocean island basalts:a new perspective from petrology, geochemistry, and mineral physics considerations[J]. Journal of Geophysical Research:Solid Earth, 2003, 108(B4):1-19.
[37] Niu Y L. The origin of alkaline lavas[J]. Science, 2008, 320(5878):883-884.
[38] Niu Y L, Wilson M, Humphreys E R, et al. A trace element perspective on the source of ocean island basalts (OIB) and fate of subducted ocean crust (SOC) and mantle lithosphere (SML)[J]. Episodes, 2012, 35(2):310-327.
[39] Pilet S, Baker M B, Stolper E M. Metasomatized lithosphere and the origin of alkaline lavas[J]. Science 2008, 320(5878):916-919.
[40] Latourrette T, Hervig R, Holloway J. Trace element partitioning between amphibole, phlogopite, and basanite melt[J]. Earth and Planetary Science Letters, 1995, 135(1):13-30.
[41] Adam J, Green T. Trace element partitioning between mica-and amphibole-bearing garnet lherzolite and hydrous basanitic melt:1. experimental results and the investigation of controls on partitioning behaviour[J]. Contributions to Mineralogy and Petrology, 2006, 152(1):1-17.
[42] White W M. Geochemistry[M]. Oxford:Wiley-Blackwell, 2013:1-660.
[43] Niu Y, Waggoner D G, Sinton J M, et al. Mantle source heterogeneity and melting processes beneath seafloor spreading centers:the East Pacific Rise, 18°-19°S[J]. Journal of Geophysical Research:Solid Earth, 1996, 101(B12):27711-27733.
[44] Hart S R, Dunn T. Experimental cpx/melt partitioning of 24 trace elements[J]. Contributions to Mineralogy and Petrology, 1993, 113(1):1-8.
[45] Wu D, Liu Y, Chen C, et al. In-situ trace element and Sr isotopic compositions of mantle xenoliths constrain two-stage metasomatism beneath the northern North China Craton[J]. Lithos, 2017, 288-289:338-351.

通讯作者: 肖媛媛(1983),女,副研究员,主要从事岩石地球化学方向研究。E-mail:yuanyuan.xiao@qdio.ac.cn