[an error occurred while processing this directive] 世界地质 2020, 39(2) 353-367 DOI:   10.3969/j.issn.1004-5589.2020.02.010  ISSN: 1004-5589 CN: 22-1111/P

本期目录 | 下期目录 | 过刊浏览 | 高级检索                                                            [打印本页]   [关闭]
基础地质
扩展功能
本文信息
Supporting info
PDF(5008KB)
[HTML全文]
参考文献[PDF]
参考文献
服务与反馈
把本文推荐给朋友
加入我的书架
加入引用管理器
引用本文
Email Alert
文章反馈
浏览反馈信息
本文关键词相关文章
断层泥
伊蒙混层矿物
断层活动特征
同震摩擦升温
杨树林剖面
水泉子沟—天山口断裂带
内蒙古
本文作者相关文章
李耀宗
李本仙
孟杰
朱彤
王晓峰
刘晓旸
施伟光
PubMed
Article by Li Y
Article by Li B
Article by Meng J
Article by Zhu T
Article by Wang X
Article by Liu X
Article by Shi W
内蒙古杨树林剖面断层泥特征及其对断层活动的指示意义
李耀宗1, 李本仙1, 孟杰1,2, 朱彤1, 王晓峰2, 刘晓旸1,3, 施伟光4
1. 吉林大学地球科学学院, 长春 130061;
2. 哈尔滨师范大学地理科学学院, 哈尔滨 150025;
3. 吉林大学无机合成与制备化学国家重点实验室, 长春 130012;
4. 东北石油大学化学化工学院石油与天然气化工省重点实验室, 黑龙江大庆 163318
摘要: 以水泉子沟—天山口断裂带杨树林剖面为研究对象,利用传统黏土矿物地质温度计讨论断层活动特征及断层活动导致温度小幅升高的可能。通过X-射线粉末衍射(XRD)及X-射线荧光光谱(XRF)测试,分析了断层泥及其中黏土矿物的物相及主量元素特征,同时,利用扫描电镜(SEM)对断层泥中分离出来的石英颗粒微形貌进行了表征。研究结果表明,杨树林剖面所在的断层主要经历了黏滑事件,断层活动性较弱且水岩反应程度较低;断层泥中的黏土矿物主要为伊蒙混层矿物,垂直于断层面方向上的蒙脱石伊利石化程度及黏土矿物含量变化趋势表明伊蒙混层矿物可能受到了同震摩擦升温效应的影响;利用黏土矿物地质温度计估算得知,断层泥中伊蒙混层矿物的形成温度为140℃~160℃;断层泥中伊蒙混层矿物形成温度上下限的差值为20℃,代表了同震摩擦造成的断层内部温度小幅升高情况。
关键词 断层泥   伊蒙混层矿物   断层活动特征   同震摩擦升温   杨树林剖面   水泉子沟—天山口断裂带   内蒙古  
Characteristics of fault gouge and its indication of fault activity in Yangshulin profile, Inner Mongolia
LI Yao-zong1, LI Ben-xian1, MENG Jie1,2, ZHU Tong1, WANG Xiao-feng2, LIU Xiao-yang1,3, SHI Wei-guang4
1. College of Earth Sciences, Jilin University, Changchun 130061, China;
2. College of Geography Sciences, Harbin Normal University, Harbin 150025, China;
3. State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China;
4. Provincial Key Laboratory of Oil&Gas Chemical Technology, College of Chemistry&Chemical Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
Abstract: Taking the Yangshulin profile of Shuiquanzigou-Tianshankou fault zone as the research object, the characteristics of fault activity and the possibility of slight temperature rise caused by fault activity are discussed based on the traditional clay mineral geothermometer. The phase as well as the major elements of the fault gouge and clay minerals in it was also studied using X-ray powder diffraction (XRD) and X-ray fluorescence spectroscopy (XRF). Moreover, scanning electron microscopy (SEM) was used to characterize the micro-morphology of quartz grains separated from the fault gouge. The results show that the fault in which the Yangshulin profile is located mainly experienced stick-slip events with weak fault activity and low water-rock reaction. The clay minerals in the fault gouge mainly consists of illite-smectite mixed-layer minerals. The degree of smectite illitization and the change trend of the content of clay minerals in the direction perpendicular to the fault surface indicate that the illite-smectite mixed-layer minerals may be affected by the co-seismic frictional heating effect. The formation temperature of illite-smectite mixed-layer minerals is estimated between 140℃ and 160℃ by clay minerals geothermometer. The difference between the highest and the lowest formation temperature of illite-smectite mixed-layer minerals is 20℃, which may represent a slight temperature rise caused by co-seismic friction.
Keywords: fault gouge   illite-smectite mixed-layer minerals   fault activity characteristics   co-seismic frictional heating   Yangshulin profile   Shuiquanzigou-Tianshankou fault zone   Inner Mongolia  
收稿日期 2019-11-20 修回日期 2020-01-08 网络版发布日期  
DOI: 10.3969/j.issn.1004-5589.2020.02.010
基金项目:

国家青年科学基金项目(41502044)

通讯作者: 李本仙(1980-),男,副教授,主要从事构造地质及地球化学研究。E-mail:lbxian@jlu.edu.cn
作者简介:
作者Email: lbxian@jlu.edu.cn

参考文献:
[1] 樊光明, 朱志澄. 断裂构造研究的进展和趋势[J]. 地球科学进展, 1992, 7(6):25-30. FAN Guang-ming, ZHU Zhi-cheng. The progress and tendency of fault research[J]. Advance in Earth Sciences, 1992, 7(6):25-30.
[2] 马向贤, 王华林, 张志武, 等. 青藏高原东缘3条断裂带断层泥铁元素化学种的分布特征[J]. 矿物岩石地球化学通报, 2014,33(3):348-354. MA Xiang-xian, WANG Hua-lin, ZHANG Zhi-wu, et al. Distribution characteristics of iron species in three faults along the eastern margin of the Tibetan Plateau, China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2014, 33(3):348-354.
[3] Niwa M, Shimada K, Aoki K, et al. Microscopic features of quartz and clay particles from fault gouges and infilled fractures in granite:discriminating between active and inactive faulting[J]. Engineering Geology, 2016, 51(11):180-196.
[4] 张芹贵, 彭向辉, 祝建华. 马边-雷波峨边-金阳大断裂构造特征及活动性[J]. 四川地质学报, 2019, 39(1):32-35. ZHANG Qin-gui, PENG Xiang-hui, ZHU Jian-hua. Characteristics and activity of the Mabian-Leibo-Ebian-Jinyang major fault[J]. Acta Geologica Sichuan, 2019, 39(1):32-35.
[5] 林传勇, 史兰斌, 刘行松, 等. 断层泥在基岩区断层新活动研究中的意义[J]. 中国地震, 1995,11(1):25-33. LIN Chuan-yong, SHI Lan-bin, LIU Xing-song, et al. Significance of fault gouge in the study of recent activity of fault in bedrock area[J]. Earthquake Research in China, 1995, 11(1):25-33.
[6] Yao L, Ma S, Platt J D, et al. The crucial role of temperature in high-velocity weakening of faults:experiments on gouge using host blocks with different thermal conductivities[J]. Geology,2016, 44(1):63-66.
[7] 墨宏山. 断层泥测年的年代意义及其在活动断层研究中的应用[C]//王思敬. 2002年中国西北部重大工程地质问题论坛论文集. 2002年中国西北部重大工程地质问题论坛,西安,2002. 北京:科学出版社,2002:108-116. MO Hong-shan. Geochronological significance of fault gouge dating and its application in research on active faults[C]//WANG Si-jing. Proceedings of the 2002 Forum Conference of Major Engineering Geological Problems in West China. The 2002 Forum Conference of Major Engineering Geological Problems in West China,Xi'an,2002. Beijing:Science Press, 2002:108-116.
[8] 郭瑾,闫小兵, 李自红,等. 汶川地震断层带中碳酸盐岩碳氧同位素分异:对断层愈合机制的启示[J]. 地质通报, 2019, 38(6):959-966. GUO Jin, YAN Xiao-bing, LI Zi-hong, et al. Carbon and oxygen isotope fractionation of carbonate rocks in the fault zone of Wenchuan earthquake:implications for the mechanism of fault healing[J]. Geological Bulletin of China, 2019, 38(6):959-966.
[9] Sheppard R E, Polissar P J, Savage H M. Organic thermal maturity as a proxy for frictional fault heating:experimental constraints on methylphenanthrene kinetics at earthquake timescales[J]. Geochimica et Cosmochimica Acta, 2015, 66(4):103-116.
[10] 裴军令, 周在征, 李海兵, 等. 汶川地震断裂带多次地震活动新证据[J]. 中国地质, 2016,63(1):43-55. PEI Jun-ling, ZHOU Zai-zheng, LI Hai-bing, et al. New evidence of repeated earthquakes along Wenchuan earthquake fault zone[J]. Geology in China, 2016, 63(1):43-55.
[11] Hirono T, Fujimoto K, Yokoyama T, et al. Clay mineral reactions caused by frictional heating during an earthquake:an example from the Taiwan Chelungpu fault[J]. Geophysical Research Letters, 2008, 35(16):L16303.
[12] 姚路,马胜利,王羽,等. 汶川地震断层岩的镜质体反射率:对断层同震摩擦滑动性质的约束[J]. 地震地质, 2016,38(4):817-829. YAO Lu, MA Sheng-li, WANG Yu, et al. The vitrinite reflectance of fault rocks from the Wenchuan earthquake fault zone:constraints on frictional properties of the fault during the earthquake[J]. Seismology and Geology, 2016, 38(4):817-829.
[13] 刘栋梁, 李海兵, 李德贵, 等. 地表探槽断裂岩岩石磁学揭示汶川地震断裂带不同滑移机制[J]. 地质学报, 2015, 89(12):50-65. LIU Dong-liang, LI Hai-bing, LI De-gui, et al. Fault-rock magnetism from the earth surface trench reveals the different slip dynamics of the Wenchuan earthquake surface rupture zone[J]. Acta Geologica Sinica, 2015, 89(12):50-65.
[14] Yamaguchi A, Ishikawa T, Kato Y, et al. Fluid-rock interaction recorded in black fault rocks in the Kodiak accretionary complex, Alaska[J]. Earth Planets & Space, 2014, 50(66):1-7.
[15] Ujiie K, Yamaguchi A, Taguchi S. Stretching of fluid inclusions in calcite as an indicator of frictional heating on faults[J]. Geology,2008, 36(2):111-114.
[16] Bos B, Peach C J, Spiers C J. Frictional-viscous flow of simulated fault gouge caused by the combined effects of phyllosilicates and pressure solution[J]. Tectonophysics, 2000, 327(3):173-194.
[17] 张秉良,周永胜,袁仁茂,等. 断层泥伊利石物理化学特征及其意义[J]. 震灾防御技术, 2014, 9(4):829-837. ZHANG Bing-liang, ZHOU Yong-sheng, YUAN Ren-mao, et al. Characteristics of illite minerals in fault gouge and their geological implications[J]. Technology for Earthquake Disaster Prevention, 2014, 9(4):829-837.
[18] Kameda J, Ujiie K, Yamaguchi A, et al. Smectite to chlorite conversion by frictional heating along a subduction thrust[J]. Earth and Planetary Science Letters,2011, 305(1/2):161-170.
[19] 孟杰. 断层泥中黏土矿物的转化及实验模拟研究:以大杨树盆地泥盆系泥鳅河组为例:博士学位论文[D]. 长春:吉林大学, 2018. MENG Jie. Study on the transformation of the clay mineral in the fault gouge and its experimental simulation:a case study of Devinian Niqiuhe Formation in the Dayangshu Basin:doctor's degree thesis[D]. Changchun:Jilin University, 2018.
[20] 杜龙,周本刚,王明明. 2003年内蒙古巴林左旗Ms 5.9地震发震构造[J]. 中国地震,2009,25(2):123-131. DU Long, ZHOU Ben-gang, WANG Ming-ming. Seismogenic structure of 2003 Balinzuoqi Ms 5.9 earthquake in Inner Mongolia, China[J]. Earthquake Research in China, 2009, 25(2):123-131.
[21] 段庆宝. 地震断层带流体作用的岩石物理和地球化学响应:以龙门山断裂花岗质破裂带为例:博士学位论文[D]. 北京:中国地震局地质研究所,2016. DUAN Qing-bao. Geochemical and petrophysical responses to fluid processes within seismogenic fault zone:exemplified by a granitic rupture zone on the Longmenshan fault:doctor's degree thesis[D]. Beijing:Institute of Geology, China Earthquake Administration, 2016.
[22] 杨晓松, 陈建业, 段庆宝, 等. 地震断层带流体作用的岩石化学-物理响应:来自矿物学、岩石化学、岩石物理学的启示[J].地震地质,2014,36(3):862-881. YANG Xiao-song, CHEN Jian-ye, DUAN Qing-bao, et al. Geochemical and petrophysical responses to fluid processes within seismogenic fault zones:implications from mineralogical, petrochemical and petrophysical data[J]. Seismology and Geology, 2014, 36(3):862-881.
[23] 袁仁茂, 张秉良, 徐锡伟, 等. 汶川地震北川-映秀断裂北段断层泥显微构造和黏土矿物特征及其意义[J]. 地震地质, 2013, 35(4):685-700. YUAN Ren-mao, ZHANG Bing-liang, XU Xi-wei, et al. Microstructural features and mineralogy of clay-rich fault gouge at the northern segment of the Yingxiu-Beichuan fault, China[J]. Seismology and Geology, 2013, 35(4):685-700.
[24] 张俊程,李本仙,孟杰,等. 蒙脱石伊利石化的水热实验模拟[J]. 世界地质, 2018, 37(1):316-326. ZHANG Jun-cheng, LI Ben-xian, MENG Jie, et al. Transformation of montmorillonite illitization based on hydrothermal experiments[J]. Global Geology, 2018, 37(1):316-326.
[25] 赵杏媛,张有瑜. 黏土矿物与黏土矿物分析[M]. 北京:海洋出版社,1990:34-35. ZHAO Xing-yuan, ZHANG You-yu. Clay minerals and clay mineral analysis[M]. Beijing:Ocean Press, 1990:34-35.
[26] 曾理,王兰生,许怀先,等. SY/T5163-6010中华人民共和国石油天然气行业标准[S]. 北京:石油工业出版社,2010:10-11. ZENG Li, WANG Lan-sheng, XU Huai-xian, et al. SY/T5163-6010 Oil and industry standards of the People's Republic of China[S]. Beijing:Petroleum Industry Press, 2010:10-11.
[27] 周张健. 蒙脱石伊利石化的控制因素、转化机制及其转化模型的研究综述[J]. 地质科技情报, 1994, 13(4):41-46. ZHOU Zhang-jian. Summary of the studying for illitization of the smectite on its controlling factors, transformation mechanism and models[J]. Geological Science and Technology Information, 1994, 13(4):41-46.
[28] Atsuyuki I, Alain M, Daniel B. Illite-smectite mixed-layer minerals in felsic volcaniclastic rocks from drill cores, Kakkonda, Japan[J]. Clays and Clay Minerals, 2004, 52(1):66-84.
[29] 杨晓松, 段庆宝, 陈建业. 汶川地震断裂带水岩相互作用及其对断裂带演化影响[J]. 地球物理学报, 2018, 61(5):112-124. YANG Xiao-song, DUAN Qing-bao, CHEN Jian-ye. Fluid-rock interactions and their effects on the evolution of the Wenchuan earthquake fault zone[J]. Chinese Journal of Geophysics, 2018, 61(5):112-124.
[30] 段庆宝, 杨晓松, 陈建业. 地震断层带流体作用的岩石物理和地球化学响应研究综述[J]. 地球物理学进展, 2015, 30(6):22-36. DUAN Qing-bao, YANG Xiao-song, CHEN Jian-ye. Review of geochemical and petrophysical responses to fluid processes within seismogenic fault zones[J]. Progress in Geophysics, 2015, 30(6):22-36.
[31] 刘海明,申俊峰,曹忠权,等. 西藏日喀则拉堆-乃东断裂带断层泥石英微形貌特征及其年代学意义[J]. 矿物岩石地球化学通报,2015,34(1):149-154. LIU Hai-ming, SHEN Jun-feng, CAO Zhong-quan, et al. Surface texture characteristics and dating implication of the gouge quartz in the Ladui-Naidong faults, Xigaze, Tibet[J]. Bulletin of Mineralogy, Petrology and Geochemistry,2015, 34(1):149-154.
[32] 申俊峰,杨为民,刘廷,等. 西秦岭白龙江断裂带断层泥石英微形貌特征及其年代学意义[J]. 矿物岩石地球化学通报,2014,33(3):271-278. SHEN Jun-feng, YANG Wei-min, LIU Ting, et al. Micro-morphology of quartz in the Bailong river fault gouge, West Qinling, China, and its chronological significance[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2014,33(3):271-278.
[33] Kanaori Y, Miyakoshi K, Kakuta T, et al. Dating fault activity by surface textures of quartz grains from fault gouges[J]. Engineering Geology, 1980, 16(3):243-262.
[34] Pedersen K. Microbial life in deep granitic rock[J]. Fems Microbiology Rewiews, 1997, 20(3/4):399-414.
[35] 戚国庆,黄润秋,彭汉兴. 水岩相互作用下结晶岩的矿物演化[J].矿物岩石,2004,24(1):43-47. QI Guo-qing, HUANG Run-qiu, PENG Han-xing. Evolution of mineral under interaction of water and crystalline rock[J]. Mineralogy and Petrology,2004,24(1):43-47.
[36] 李建,张岳桥,吴泰然,等. 青川断裂带中段断层泥中石英颗粒表面微形貌特征及其年代学意义[J]. 地球学报,2016,37(2):153-162. LI Jian, ZHANG Yue-qiao, WU Tai-ran, et al. Micromorphology of quartz in fault gouge from the middle segment of the Qingchuan fault zone and its chronological implications[J]. Acta Geoscientica Sinica, 2016, 37(2):153-162.
[37] 邵顺妹. 断层泥研究的现状和进展[J]. 高原地震,1994,6(3):51-56. SHAO Shun-mei. Present condition and progress of fault gouge research[J]. Plateau Earthquake Research, 1994, 6(3):51-56.
[38] 杨主恩,胡碧茹,洪汉净. 活断层中断层泥的石英碎砾的显微特征及其意义[J]. 科学通报,1984,35(8):484-486. YANG Zhu-en, HU Bi-ru, HONG Han-jing. The microscopic features and significance of quartz fragment in fault gouge in active fault[J]. Chinese Science Bulletin,1984, 35(8):484-486.
[39] 俞维贤,何蔚,向才英,等. 建水地区主要断裂断层泥中石英碎砾表面SEM特征及其断裂活动[J]. 地震研究,1998,21(2):60-66. YU Wei-xian, HE Wei, XIAGN Cai-ying, et al. Surface SEM feature of quartz grail in fault gouge in Jianshui region and its fault activity[J]. Journal of Seismological Research,1998, 21(2):60-66.
[40] 张秉良, 刘桂芬. 含有黏土矿物断层泥的显微构造特征:判别断层滑动方式的一种方法[J]. 地震地质译丛, 1992, 14(5):57-61. ZHANG Bing-liang, LIU Gui-fen. Microstructural characteristics of fault gouge containing clay mineral:a method of distinguishing fault slip[J]. Seismic Geological Translation, 1992, 14(5):57-61.
[41] Lu C B. Fulid infiltration after seismic faulting:examining chemical and mineralogical composition of the fault rocks in the drilling cores from Nantou well of the Chelungpu fault:master's degree thesis[D]. Taiwan Chungli:National Central University, 2004.
[42] Isaacs A J, Evans J P, Song S R,et al. Structural, mineralogical, and geochemical characterization of the Chelungpu thrust fault, Taiwan[J]. Terrestrial Atmospheric and Oceanic Sciences,2007, 18(2):183-221.
[43] Slemmons D B, Depolo C M. Evaluation of active faulting and associated hazards[M]//Wallace R E.Active tectionics.Washington D.C.:National Academy Press, 1986:45-62.
[44] 王正阳, 曹建劲, 罗松英,等. 汶川地震带断层泥X-射线衍射和红外光谱分析[J]. 光谱学与光谱分析, 2014,34(5):266-270. WANG Zheng-yang, CAO Jian-jin, LUO Song-ying, et al. X-Ray diffraction and infrared spectrum analysis of fault gouge in Wenchuan seismic belt[J]. Spectroscopy and Spectral Analysis, 2014, 34(5):266-270.
[45] Sinisi R, Petrullo A, Agosta F, et al. Contrasting fault fluids along high-angle faults:a case study from southern Apennines (Italy)[J]. Tectonophysics, 2016, 690(1):206-218.
[46] Solum J G, Hickman S H, Lockner D A, et al. Mineralogical characterization of protolith and fault rocks from the SAFOD Main Hole[J]. Geophysical Research Letters, 2006, 33(21):L21314.
[47] Cai J, Du J, Chen Z, et al. Hydrothermal experiments reveal the influence of organic matter on smectite illitization[J]. Clays and Clay Minerals, 2018,66(1):28-42.
[48] Harvey C C, Browne P R L. Mixed-layer clay geothermometry in the Wairakei geothermal field New Zealand[J]. Clays & Clay Minerals, 1991, 39(6):614-621.
[49] Velde B, Suzuki T, Nicot E. Pressure-temperature-composition of illite/smectite mixed-layer minerals:niger delta mudstones and other examples[J]. Clays and Clay Minerals, 1986, 34(4):435-441.
[50] Huang W L, Longo J M, Pevear D R. An experimentally derived kinetic model for smectite-to illite conversion and its use as a geothermometer[J]. Clays and Clay Minerals, 1993,41(2):162-177.
[51] 李霞, 王佳, 谭先锋, 等. 泥页岩成岩过程中黏土矿物脱水转化及热动力机制[J]. 石油化工高等学校学报, 2018,31(1):61-70. LI Xia, WANG Jia, TAN Xian-feng, et al. The dewatering transformation and thermal dynamic mechanism of clay mineral in shale diagenesis[J]. Journal of Petrochemical Universities,2018, 31(1):61-70.
[52] Aoyagi K, Kazama T. Transformational changes of clay minerals, zeolites and silica minerals during diagenesis[J]. Sedimentology, 1980, 27(2):179-188.
[53] 汪辑安. 地热与油气资源[M]. 北京:科学出版社,1988:165-197. WANG Ji-an. Geothermal and petroleum resources[M]. Beijing:Science Press, 1988:165-197.
[54] 季峻峰, 刘英俊, Browne P R L. 285℃条件下伊/蒙混层矿物的存在及其意义:新西兰现代活动地热区的研究[J]. 科学通报, 1997,48(4):64-67. JI Jun-feng, LIU Ying-jun, Browne P R L. The existence and significance of illite/smectite at 285℃:a study of modern active geothermal areas in New Zealand[J]. Chinese Science Bulletin, 1997, 48(4):64-67.
[55] 赵杏媛,何东博. 黏土矿物与油气勘探开发[M].北京:石油工业出版社,2017:229. ZHAO Xing-yuan, HE Dong-bo. Clay mineral and application oil and gas exploration and development[M]. Beijing:Petroleum Industry Press,2017:229.
[56] Ransom B, Helgeson H C. A chemical and thermodynamic model of aluminous dioctahedral 2:1 layer clay minerals in diagenetic processes:regular solution representation of interlayer dehydration in semctite[J]. American Journal of Science, 1994, 294(4):449-484.
[57] Linde A T, Gladwin M T, Johnston M J S, et al. A slow earthquake sequence on the San Andreas fault[J].Nature, 1996, 383(6595):65-68.
[58] 童亨茂, 张生根, 胡远清. 断层作用热模型及其对烃源岩热演化的影响[J]. 地质力学学报, 2006, 12(4):445-453. TONG Heng-mao, ZHANG Sheng-gen, HU Yuan-qing. A quantitative model of heat production by faulting and its effect on thermal evolution of hydrocarbon source rocks[J]. Journal of Geomechanics, 2006, 12(4):445-453.
[59] 马瑾, 马少鹏, 刘培洵, 等. 识别断层活动和失稳的热场标志:实验室的证据[J]. 地震地质, 2008,30(2):17-36. MA Jin, MA Shao-peng, LIU Pei-xun, et al. Thermal field indicators for identifying active fault and its instability from laboratory experiments[J]. Seismology and Geology,2008, 30(2):17-36.
[60] Dang J X, Zhou Y S, He C R, et al. Mineralogical compositions of fault rocks from surface ruptures of Wenchuan earthquake and implication of mineral transformation during the seismic cycle along Yingxiu-Beichuan fault, Sichuan Province, China[J]. Mineralogy and Petrology, 2017, 70(1):1-15.
本刊中的类似文章
1.董锡泽, 杨贺, 樊金虎, 孙立秋, 王可勇, 马万里.内蒙古维拉斯托Zn-Cu-Ag矿床硫同位素及成矿物理化学条件研究[J]. 世界地质, 2019,38(4): 953-961
2.刘永新, 姜琦刚, 刘伟, 谷强.利用GRSFAI预测内蒙古北部干旱地区浅层地下水分布[J]. 世界地质, 2019,38(4): 1142-1151
3.权知心, 李香资, 岑朝正, 丁军召, 张一, 王瑾.内蒙古索家沟玄武岩覆盖区银铅锌矿地质特征及找矿标志[J]. 世界地质, 2019,38(3): 737-745
4.冷柚兵, 张元厚, 陈跃军, 王继春, 吴国学.内蒙古中部朱日和地区变质玄武岩特征及其意义[J]. 世界地质, 2019,38(3): 598-610
5.李长华, 陈旭, 李明飞.内蒙古吉源南铌铷矿点物化探异常特征及成矿潜力分析[J]. 世界地质, 2019,38(2): 378-388
6.王春光, 孙国胜, 孙九达, 牛军平, 张锐, 王子维, 夏磊.内蒙古荷尔勿苏铅锌矿区二叠纪侵入岩成因:锆石U-Pb年代学与岩石地球化学制约[J]. 世界地质, 2018,37(3): 737-746,760
7.于长霞, 高福红, 张永胜, 纪元元, 何雨思.内蒙古靠山屯银铅多金属矿综合找矿信息的提取及找矿前景[J]. 世界地质, 2017,36(2): 520-529
8.杜岳丹, 和钟铧, 隋振民, 谭皓元, 任子慧.大兴安岭中段索伦地区玛尼吐组火山岩年代学、地球化学及其构造背景[J]. 世界地质, 2017,36(2): 346-360
9.周建平, 刘永江, 温泉波, 李伟民, 张丽, 马国祥.内蒙古东北部巨日河地区早- -中三叠世碎屑锆石年龄及其地质意义[J]. 世界地质, 2016,18(4): 914-
10.禚志博, 朱占平, 丁歌, 金凤兰, 任泽宁.内蒙古林西地区晚二叠世林西组碎屑岩成岩作用及其对储层物性的影响[J]. 世界地质, 2016,35(4): 1058-1065
11.牛军平, 关淑艳, 张立仕, 夏磊, 王子维, 周佳.内蒙古鄂温克旗那干楚银铜多金属勘查区成矿特征与找矿预测[J]. 世界地质, 2016,18(4): 961-
12.辛未, 王力, 王英德, 张宇婷.内蒙古乌拉特中旗准噶顺花岗闪长岩中锆石 U--Pb 年代学与岩石地球化学[J]. 世界地质, 2016,35(4): 931-941
13.段明, 郗爱华, 孙国胜, 谢瑜, 司马献章, 魏佳林, 张锋, 冯晓曦, 曾威.内蒙古东乌旗地区崇根山岩块超基性岩地球化学特征[J]. 世界地质, 2016,35(3): 653-665
14.姚杰, 胡大千, 孙国胜, 战乃臣, 李洋, 董清水, 朱占平.内蒙古索伦地区中二叠统哲斯组有机质的拉曼光谱特征及地质意义[J]. 世界地质, 2016,35(3): 760-770
15.王璐, 赵庆英, 李鹏川, 李子昊, 邱士龙, 田子龙.内蒙古巴林右旗东梁岩体 LA--ICP--MS 锆石 U--Pb 定年及地球化学特征[J]. 世界地质, 2016,35(2): 370-386

Copyright by 世界地质