世界地质    2020 39 (2): 353-367   ISSN: 1004-5589  CN: 22-1111/P  

内蒙古杨树林剖面断层泥特征及其对断层活动的指示意义
李耀宗1, 李本仙1, 孟杰1,2, 朱彤1, 王晓峰2, 刘晓旸1,3, 施伟光4
1. 吉林大学地球科学学院, 长春 130061;
2. 哈尔滨师范大学地理科学学院, 哈尔滨 150025;
3. 吉林大学无机合成与制备化学国家重点实验室, 长春 130012;
4. 东北石油大学化学化工学院石油与天然气化工省重点实验室, 黑龙江大庆 163318
收稿日期 2019-11-20  修回日期 2020-01-08  网络版发布日期 null
参考文献  [1] 樊光明, 朱志澄. 断裂构造研究的进展和趋势[J]. 地球科学进展, 1992, 7(6):25-30. FAN Guang-ming, ZHU Zhi-cheng. The progress and tendency of fault research[J]. Advance in Earth Sciences, 1992, 7(6):25-30.
[2] 马向贤, 王华林, 张志武, 等. 青藏高原东缘3条断裂带断层泥铁元素化学种的分布特征[J]. 矿物岩石地球化学通报, 2014,33(3):348-354. MA Xiang-xian, WANG Hua-lin, ZHANG Zhi-wu, et al. Distribution characteristics of iron species in three faults along the eastern margin of the Tibetan Plateau, China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2014, 33(3):348-354.
[3] Niwa M, Shimada K, Aoki K, et al. Microscopic features of quartz and clay particles from fault gouges and infilled fractures in granite:discriminating between active and inactive faulting[J]. Engineering Geology, 2016, 51(11):180-196.
[4] 张芹贵, 彭向辉, 祝建华. 马边-雷波峨边-金阳大断裂构造特征及活动性[J]. 四川地质学报, 2019, 39(1):32-35. ZHANG Qin-gui, PENG Xiang-hui, ZHU Jian-hua. Characteristics and activity of the Mabian-Leibo-Ebian-Jinyang major fault[J]. Acta Geologica Sichuan, 2019, 39(1):32-35.
[5] 林传勇, 史兰斌, 刘行松, 等. 断层泥在基岩区断层新活动研究中的意义[J]. 中国地震, 1995,11(1):25-33. LIN Chuan-yong, SHI Lan-bin, LIU Xing-song, et al. Significance of fault gouge in the study of recent activity of fault in bedrock area[J]. Earthquake Research in China, 1995, 11(1):25-33.
[6] Yao L, Ma S, Platt J D, et al. The crucial role of temperature in high-velocity weakening of faults:experiments on gouge using host blocks with different thermal conductivities[J]. Geology,2016, 44(1):63-66.
[7] 墨宏山. 断层泥测年的年代意义及其在活动断层研究中的应用[C]//王思敬. 2002年中国西北部重大工程地质问题论坛论文集. 2002年中国西北部重大工程地质问题论坛,西安,2002. 北京:科学出版社,2002:108-116. MO Hong-shan. Geochronological significance of fault gouge dating and its application in research on active faults[C]//WANG Si-jing. Proceedings of the 2002 Forum Conference of Major Engineering Geological Problems in West China. The 2002 Forum Conference of Major Engineering Geological Problems in West China,Xi'an,2002. Beijing:Science Press, 2002:108-116.
[8] 郭瑾,闫小兵, 李自红,等. 汶川地震断层带中碳酸盐岩碳氧同位素分异:对断层愈合机制的启示[J]. 地质通报, 2019, 38(6):959-966. GUO Jin, YAN Xiao-bing, LI Zi-hong, et al. Carbon and oxygen isotope fractionation of carbonate rocks in the fault zone of Wenchuan earthquake:implications for the mechanism of fault healing[J]. Geological Bulletin of China, 2019, 38(6):959-966.
[9] Sheppard R E, Polissar P J, Savage H M. Organic thermal maturity as a proxy for frictional fault heating:experimental constraints on methylphenanthrene kinetics at earthquake timescales[J]. Geochimica et Cosmochimica Acta, 2015, 66(4):103-116.
[10] 裴军令, 周在征, 李海兵, 等. 汶川地震断裂带多次地震活动新证据[J]. 中国地质, 2016,63(1):43-55. PEI Jun-ling, ZHOU Zai-zheng, LI Hai-bing, et al. New evidence of repeated earthquakes along Wenchuan earthquake fault zone[J]. Geology in China, 2016, 63(1):43-55.
[11] Hirono T, Fujimoto K, Yokoyama T, et al. Clay mineral reactions caused by frictional heating during an earthquake:an example from the Taiwan Chelungpu fault[J]. Geophysical Research Letters, 2008, 35(16):L16303.
[12] 姚路,马胜利,王羽,等. 汶川地震断层岩的镜质体反射率:对断层同震摩擦滑动性质的约束[J]. 地震地质, 2016,38(4):817-829. YAO Lu, MA Sheng-li, WANG Yu, et al. The vitrinite reflectance of fault rocks from the Wenchuan earthquake fault zone:constraints on frictional properties of the fault during the earthquake[J]. Seismology and Geology, 2016, 38(4):817-829.
[13] 刘栋梁, 李海兵, 李德贵, 等. 地表探槽断裂岩岩石磁学揭示汶川地震断裂带不同滑移机制[J]. 地质学报, 2015, 89(12):50-65. LIU Dong-liang, LI Hai-bing, LI De-gui, et al. Fault-rock magnetism from the earth surface trench reveals the different slip dynamics of the Wenchuan earthquake surface rupture zone[J]. Acta Geologica Sinica, 2015, 89(12):50-65.
[14] Yamaguchi A, Ishikawa T, Kato Y, et al. Fluid-rock interaction recorded in black fault rocks in the Kodiak accretionary complex, Alaska[J]. Earth Planets & Space, 2014, 50(66):1-7.
[15] Ujiie K, Yamaguchi A, Taguchi S. Stretching of fluid inclusions in calcite as an indicator of frictional heating on faults[J]. Geology,2008, 36(2):111-114.
[16] Bos B, Peach C J, Spiers C J. Frictional-viscous flow of simulated fault gouge caused by the combined effects of phyllosilicates and pressure solution[J]. Tectonophysics, 2000, 327(3):173-194.
[17] 张秉良,周永胜,袁仁茂,等. 断层泥伊利石物理化学特征及其意义[J]. 震灾防御技术, 2014, 9(4):829-837. ZHANG Bing-liang, ZHOU Yong-sheng, YUAN Ren-mao, et al. Characteristics of illite minerals in fault gouge and their geological implications[J]. Technology for Earthquake Disaster Prevention, 2014, 9(4):829-837.
[18] Kameda J, Ujiie K, Yamaguchi A, et al. Smectite to chlorite conversion by frictional heating along a subduction thrust[J]. Earth and Planetary Science Letters,2011, 305(1/2):161-170.
[19] 孟杰. 断层泥中黏土矿物的转化及实验模拟研究:以大杨树盆地泥盆系泥鳅河组为例:博士学位论文[D]. 长春:吉林大学, 2018. MENG Jie. Study on the transformation of the clay mineral in the fault gouge and its experimental simulation:a case study of Devinian Niqiuhe Formation in the Dayangshu Basin:doctor's degree thesis[D]. Changchun:Jilin University, 2018.
[20] 杜龙,周本刚,王明明. 2003年内蒙古巴林左旗Ms 5.9地震发震构造[J]. 中国地震,2009,25(2):123-131. DU Long, ZHOU Ben-gang, WANG Ming-ming. Seismogenic structure of 2003 Balinzuoqi Ms 5.9 earthquake in Inner Mongolia, China[J]. Earthquake Research in China, 2009, 25(2):123-131.
[21] 段庆宝. 地震断层带流体作用的岩石物理和地球化学响应:以龙门山断裂花岗质破裂带为例:博士学位论文[D]. 北京:中国地震局地质研究所,2016. DUAN Qing-bao. Geochemical and petrophysical responses to fluid processes within seismogenic fault zone:exemplified by a granitic rupture zone on the Longmenshan fault:doctor's degree thesis[D]. Beijing:Institute of Geology, China Earthquake Administration, 2016.
[22] 杨晓松, 陈建业, 段庆宝, 等. 地震断层带流体作用的岩石化学-物理响应:来自矿物学、岩石化学、岩石物理学的启示[J].地震地质,2014,36(3):862-881. YANG Xiao-song, CHEN Jian-ye, DUAN Qing-bao, et al. Geochemical and petrophysical responses to fluid processes within seismogenic fault zones:implications from mineralogical, petrochemical and petrophysical data[J]. Seismology and Geology, 2014, 36(3):862-881.
[23] 袁仁茂, 张秉良, 徐锡伟, 等. 汶川地震北川-映秀断裂北段断层泥显微构造和黏土矿物特征及其意义[J]. 地震地质, 2013, 35(4):685-700. YUAN Ren-mao, ZHANG Bing-liang, XU Xi-wei, et al. Microstructural features and mineralogy of clay-rich fault gouge at the northern segment of the Yingxiu-Beichuan fault, China[J]. Seismology and Geology, 2013, 35(4):685-700.
[24] 张俊程,李本仙,孟杰,等. 蒙脱石伊利石化的水热实验模拟[J]. 世界地质, 2018, 37(1):316-326. ZHANG Jun-cheng, LI Ben-xian, MENG Jie, et al. Transformation of montmorillonite illitization based on hydrothermal experiments[J]. Global Geology, 2018, 37(1):316-326.
[25] 赵杏媛,张有瑜. 黏土矿物与黏土矿物分析[M]. 北京:海洋出版社,1990:34-35. ZHAO Xing-yuan, ZHANG You-yu. Clay minerals and clay mineral analysis[M]. Beijing:Ocean Press, 1990:34-35.
[26] 曾理,王兰生,许怀先,等. SY/T5163-6010中华人民共和国石油天然气行业标准[S]. 北京:石油工业出版社,2010:10-11. ZENG Li, WANG Lan-sheng, XU Huai-xian, et al. SY/T5163-6010 Oil and industry standards of the People's Republic of China[S]. Beijing:Petroleum Industry Press, 2010:10-11.
[27] 周张健. 蒙脱石伊利石化的控制因素、转化机制及其转化模型的研究综述[J]. 地质科技情报, 1994, 13(4):41-46. ZHOU Zhang-jian. Summary of the studying for illitization of the smectite on its controlling factors, transformation mechanism and models[J]. Geological Science and Technology Information, 1994, 13(4):41-46.
[28] Atsuyuki I, Alain M, Daniel B. Illite-smectite mixed-layer minerals in felsic volcaniclastic rocks from drill cores, Kakkonda, Japan[J]. Clays and Clay Minerals, 2004, 52(1):66-84.
[29] 杨晓松, 段庆宝, 陈建业. 汶川地震断裂带水岩相互作用及其对断裂带演化影响[J]. 地球物理学报, 2018, 61(5):112-124. YANG Xiao-song, DUAN Qing-bao, CHEN Jian-ye. Fluid-rock interactions and their effects on the evolution of the Wenchuan earthquake fault zone[J]. Chinese Journal of Geophysics, 2018, 61(5):112-124.
[30] 段庆宝, 杨晓松, 陈建业. 地震断层带流体作用的岩石物理和地球化学响应研究综述[J]. 地球物理学进展, 2015, 30(6):22-36. DUAN Qing-bao, YANG Xiao-song, CHEN Jian-ye. Review of geochemical and petrophysical responses to fluid processes within seismogenic fault zones[J]. Progress in Geophysics, 2015, 30(6):22-36.
[31] 刘海明,申俊峰,曹忠权,等. 西藏日喀则拉堆-乃东断裂带断层泥石英微形貌特征及其年代学意义[J]. 矿物岩石地球化学通报,2015,34(1):149-154. LIU Hai-ming, SHEN Jun-feng, CAO Zhong-quan, et al. Surface texture characteristics and dating implication of the gouge quartz in the Ladui-Naidong faults, Xigaze, Tibet[J]. Bulletin of Mineralogy, Petrology and Geochemistry,2015, 34(1):149-154.
[32] 申俊峰,杨为民,刘廷,等. 西秦岭白龙江断裂带断层泥石英微形貌特征及其年代学意义[J]. 矿物岩石地球化学通报,2014,33(3):271-278. SHEN Jun-feng, YANG Wei-min, LIU Ting, et al. Micro-morphology of quartz in the Bailong river fault gouge, West Qinling, China, and its chronological significance[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2014,33(3):271-278.
[33] Kanaori Y, Miyakoshi K, Kakuta T, et al. Dating fault activity by surface textures of quartz grains from fault gouges[J]. Engineering Geology, 1980, 16(3):243-262.
[34] Pedersen K. Microbial life in deep granitic rock[J]. Fems Microbiology Rewiews, 1997, 20(3/4):399-414.
[35] 戚国庆,黄润秋,彭汉兴. 水岩相互作用下结晶岩的矿物演化[J].矿物岩石,2004,24(1):43-47. QI Guo-qing, HUANG Run-qiu, PENG Han-xing. Evolution of mineral under interaction of water and crystalline rock[J]. Mineralogy and Petrology,2004,24(1):43-47.
[36] 李建,张岳桥,吴泰然,等. 青川断裂带中段断层泥中石英颗粒表面微形貌特征及其年代学意义[J]. 地球学报,2016,37(2):153-162. LI Jian, ZHANG Yue-qiao, WU Tai-ran, et al. Micromorphology of quartz in fault gouge from the middle segment of the Qingchuan fault zone and its chronological implications[J]. Acta Geoscientica Sinica, 2016, 37(2):153-162.
[37] 邵顺妹. 断层泥研究的现状和进展[J]. 高原地震,1994,6(3):51-56. SHAO Shun-mei. Present condition and progress of fault gouge research[J]. Plateau Earthquake Research, 1994, 6(3):51-56.
[38] 杨主恩,胡碧茹,洪汉净. 活断层中断层泥的石英碎砾的显微特征及其意义[J]. 科学通报,1984,35(8):484-486. YANG Zhu-en, HU Bi-ru, HONG Han-jing. The microscopic features and significance of quartz fragment in fault gouge in active fault[J]. Chinese Science Bulletin,1984, 35(8):484-486.
[39] 俞维贤,何蔚,向才英,等. 建水地区主要断裂断层泥中石英碎砾表面SEM特征及其断裂活动[J]. 地震研究,1998,21(2):60-66. YU Wei-xian, HE Wei, XIAGN Cai-ying, et al. Surface SEM feature of quartz grail in fault gouge in Jianshui region and its fault activity[J]. Journal of Seismological Research,1998, 21(2):60-66.
[40] 张秉良, 刘桂芬. 含有黏土矿物断层泥的显微构造特征:判别断层滑动方式的一种方法[J]. 地震地质译丛, 1992, 14(5):57-61. ZHANG Bing-liang, LIU Gui-fen. Microstructural characteristics of fault gouge containing clay mineral:a method of distinguishing fault slip[J]. Seismic Geological Translation, 1992, 14(5):57-61.
[41] Lu C B. Fulid infiltration after seismic faulting:examining chemical and mineralogical composition of the fault rocks in the drilling cores from Nantou well of the Chelungpu fault:master's degree thesis[D]. Taiwan Chungli:National Central University, 2004.
[42] Isaacs A J, Evans J P, Song S R,et al. Structural, mineralogical, and geochemical characterization of the Chelungpu thrust fault, Taiwan[J]. Terrestrial Atmospheric and Oceanic Sciences,2007, 18(2):183-221.
[43] Slemmons D B, Depolo C M. Evaluation of active faulting and associated hazards[M]//Wallace R E.Active tectionics.Washington D.C.:National Academy Press, 1986:45-62.
[44] 王正阳, 曹建劲, 罗松英,等. 汶川地震带断层泥X-射线衍射和红外光谱分析[J]. 光谱学与光谱分析, 2014,34(5):266-270. WANG Zheng-yang, CAO Jian-jin, LUO Song-ying, et al. X-Ray diffraction and infrared spectrum analysis of fault gouge in Wenchuan seismic belt[J]. Spectroscopy and Spectral Analysis, 2014, 34(5):266-270.
[45] Sinisi R, Petrullo A, Agosta F, et al. Contrasting fault fluids along high-angle faults:a case study from southern Apennines (Italy)[J]. Tectonophysics, 2016, 690(1):206-218.
[46] Solum J G, Hickman S H, Lockner D A, et al. Mineralogical characterization of protolith and fault rocks from the SAFOD Main Hole[J]. Geophysical Research Letters, 2006, 33(21):L21314.
[47] Cai J, Du J, Chen Z, et al. Hydrothermal experiments reveal the influence of organic matter on smectite illitization[J]. Clays and Clay Minerals, 2018,66(1):28-42.
[48] Harvey C C, Browne P R L. Mixed-layer clay geothermometry in the Wairakei geothermal field New Zealand[J]. Clays & Clay Minerals, 1991, 39(6):614-621.
[49] Velde B, Suzuki T, Nicot E. Pressure-temperature-composition of illite/smectite mixed-layer minerals:niger delta mudstones and other examples[J]. Clays and Clay Minerals, 1986, 34(4):435-441.
[50] Huang W L, Longo J M, Pevear D R. An experimentally derived kinetic model for smectite-to illite conversion and its use as a geothermometer[J]. Clays and Clay Minerals, 1993,41(2):162-177.
[51] 李霞, 王佳, 谭先锋, 等. 泥页岩成岩过程中黏土矿物脱水转化及热动力机制[J]. 石油化工高等学校学报, 2018,31(1):61-70. LI Xia, WANG Jia, TAN Xian-feng, et al. The dewatering transformation and thermal dynamic mechanism of clay mineral in shale diagenesis[J]. Journal of Petrochemical Universities,2018, 31(1):61-70.
[52] Aoyagi K, Kazama T. Transformational changes of clay minerals, zeolites and silica minerals during diagenesis[J]. Sedimentology, 1980, 27(2):179-188.
[53] 汪辑安. 地热与油气资源[M]. 北京:科学出版社,1988:165-197. WANG Ji-an. Geothermal and petroleum resources[M]. Beijing:Science Press, 1988:165-197.
[54] 季峻峰, 刘英俊, Browne P R L. 285℃条件下伊/蒙混层矿物的存在及其意义:新西兰现代活动地热区的研究[J]. 科学通报, 1997,48(4):64-67. JI Jun-feng, LIU Ying-jun, Browne P R L. The existence and significance of illite/smectite at 285℃:a study of modern active geothermal areas in New Zealand[J]. Chinese Science Bulletin, 1997, 48(4):64-67.
[55] 赵杏媛,何东博. 黏土矿物与油气勘探开发[M].北京:石油工业出版社,2017:229. ZHAO Xing-yuan, HE Dong-bo. Clay mineral and application oil and gas exploration and development[M]. Beijing:Petroleum Industry Press,2017:229.
[56] Ransom B, Helgeson H C. A chemical and thermodynamic model of aluminous dioctahedral 2:1 layer clay minerals in diagenetic processes:regular solution representation of interlayer dehydration in semctite[J]. American Journal of Science, 1994, 294(4):449-484.
[57] Linde A T, Gladwin M T, Johnston M J S, et al. A slow earthquake sequence on the San Andreas fault[J].Nature, 1996, 383(6595):65-68.
[58] 童亨茂, 张生根, 胡远清. 断层作用热模型及其对烃源岩热演化的影响[J]. 地质力学学报, 2006, 12(4):445-453. TONG Heng-mao, ZHANG Sheng-gen, HU Yuan-qing. A quantitative model of heat production by faulting and its effect on thermal evolution of hydrocarbon source rocks[J]. Journal of Geomechanics, 2006, 12(4):445-453.
[59] 马瑾, 马少鹏, 刘培洵, 等. 识别断层活动和失稳的热场标志:实验室的证据[J]. 地震地质, 2008,30(2):17-36. MA Jin, MA Shao-peng, LIU Pei-xun, et al. Thermal field indicators for identifying active fault and its instability from laboratory experiments[J]. Seismology and Geology,2008, 30(2):17-36.
[60] Dang J X, Zhou Y S, He C R, et al. Mineralogical compositions of fault rocks from surface ruptures of Wenchuan earthquake and implication of mineral transformation during the seismic cycle along Yingxiu-Beichuan fault, Sichuan Province, China[J]. Mineralogy and Petrology, 2017, 70(1):1-15.

通讯作者: 李本仙(1980-),男,副教授,主要从事构造地质及地球化学研究。E-mail:lbxian@jlu.edu.cn