[an error occurred while processing this directive] 世界地质 2020, 39(2) 250-260 DOI:   10.3969/j.issn.1004-5589.2020.02.002  ISSN: 1004-5589 CN: 22-1111/P

本期目录 | 下期目录 | 过刊浏览 | 高级检索                                                            [打印本页]   [关闭]
基础地质
扩展功能
本文信息
Supporting info
PDF(6594KB)
[HTML全文]
参考文献[PDF]
参考文献
服务与反馈
把本文推荐给朋友
加入我的书架
加入引用管理器
引用本文
Email Alert
文章反馈
浏览反馈信息
本文关键词相关文章
闽中裂谷带
熊山岩体
锆石U-Pb测年
地球化学
本文作者相关文章
王剑平
王会胜
唐秀念
李绪俊
PubMed
Article by Wang J
Article by Wang H
Article by Tang X
Article by Li X
福建政和地区熊山岩体锆石U-Pb定年、地球化学特征及其成矿意义
王剑平1, 王会胜2, 唐秀念2, 李绪俊1
1. 吉林大学地球科学学院, 长春 130061;
2. 福建省政和县宏坤矿业有限公司, 福建 政和 353600
摘要: 熊山岩体分布于福建政和地区,大地构造位置位于华南褶皱系东部的闽中裂谷带中西部,岩性总体上属基性岩。浅部主要为细粒辉长岩、辉绿玢岩,深部出现粗粒闪长岩和花岗闪长岩类。细粒辉长岩的LA-ICP-MS锆石U-Pb测年结果为(463.9±6.2)Ma,粗粒闪长岩的LA-ICP-MS锆石U-Pb测年结果为(465.7±6.1)Ma,表明熊山岩体的结晶年龄为465.7~463.9 Ma。样品在TAS图解中主要投影在辉长岩范围内。细粒辉长岩中稀土元素总量偏低,(La/Yb)N为1.08,LREE/HREE比值为1.94;δEu为0.83,表现为较弱的负异常;δCe为0.92,基本无异常;LILE(K、Sr、Ba)含量较低,HFSE(U、Zr、Nb)和Ti表现为较弱的正异常。粗粒闪长岩及花岗闪长岩中稀土元素总量中等,(La/Yb)N为8.68和8.91,LREE/HREE比值为8.60和8.50,富集轻稀土元素;δEu为0.95和0.87,表现为较弱的负异常;δCe为0.96和0.99,无明显异常;样品中LILE(K、Rb、Ba、Sr)相对富集,HFSE(U、Th、Nb)、Ti和P亏损。根据岩体地球化学特征,认为形成熊山岩体早期细粒辉长岩的岩浆来自于深部的地幔橄榄岩,而形成较晚期的粗粒闪长岩和花岗闪长岩类的岩浆则来自于玄武质和榴辉岩熔体区。熊山岩体成岩时间早于大药坑金矿床形成时间,不是成矿岩体,但在后期成矿过程中可提供成矿物质,是金矿形成的“矿源岩”。
关键词 闽中裂谷带   熊山岩体   锆石U-Pb测年   地球化学  
Zircon U-Pb dating, geochemistry and metallogenic significance of Xiongshan intrusion in Zhenghe area, Fujian
WANG Jian-ping1, WANG Hui-sheng2, TANG Xiu-nian2, LI Xu-jun1
1. College of Earth Sciences, Jilin University, Changchun 130061, China;
2. HONG KUN Mining Limited Company in Zhenghe County, Zhenghe 353600, Fujian, China
Abstract: The Xiongshan intrusion is located in Zhenghe area of Fujian, and tectonically it lies in middle-west of central Fujian rifting zone in the east of South China fold system, belonging to basic rock mass. The shallow part of the intrusion is mainly composed of fine gabbro and diabasite and the deep part mainly consists of coarse diorite and granodiorite. According to the LA-ICP-MS zircon U-Pb dating of fine gabbro (463.9±6.2 Ma) and coarse diorite(465.7±6.1 Ma), the crystallization age of the Xiongshan intrusion is 465.7~463.9 Ma. The samples are mainly projected in the gabbro area in the TAS diagram. The ∑REE content in fine gabbro is low, the (La/Yb)N ratio is 1.08 and the LREE/HREE ratio is 1.94;δEu is 0.83 which means weak negative anomaly; δCe is 0.92 which means no anomaly; the content of LILE(K, Sr, Ba) are low, while HFSE(U, Zr, Nb) and Ti show weak positive anomaly. The ∑REE content in coarse diorite and granodiorite is medium, with (La/Yb)N ratio of 8.68 and 8.91, the LREE/HREE ratio of 8.60 and 8.50, respectively, showing enrichment in LREE; δEu is 0.95 and 0.87, respectively which means weak negative anomaly; δCe is 0.96 and 0.99 which means no anomaly; the samples are characterized by enrichment in LILE (K, Rb, Ba, K) and depletion in HFSE (U, Th, Nb), Ti and P. According to the geochemical characteristics of the Xiongshan intrusion, it is believed that the older fine gabbro came from the deep mantle peridotite, and the younger coarse diorite and granodiorite were from the eclogite and basaltic melting zone. The age of the Xiongshan intrusion is older than that of the Dayaokeng gold deposit, implying the intrusion was not metallogenic rock body, but could serve as the host rock of the deposit, providing some ore-forming material during the later metallogenic process.
Keywords: central Fujian rifting zone   Xiongshan intrusion   zircon U-Pb dating   geochemistry  
收稿日期 2020-01-07 修回日期 2020-03-24 网络版发布日期  
DOI: 10.3969/j.issn.1004-5589.2020.02.002
基金项目:

宏坤矿业有限公司福建省政和县大药坑金矿深部矿体定位预测(3R217X444422)

通讯作者: 李绪俊(1958-),男,教授,主要从事矿床学研究。E-mail:lixuj@jlu.edu.cn
作者简介:
作者Email: lixuj@jlu.edu.cn

参考文献:
[1] 毛光武,曹亮,严卸平,等. 浅成低温热液型金矿研究综述[J]. 地质找矿论丛, 2015, 30(1):121-132. MAO Guang-wu, CAO Liang, YAN Xie-ping, et al. A review of research on epithermal gold deposits[J]. Contributions to Geology and Mineral Resources Research, 2015, 30(1):121-132.
[2] 陈衍景. 初论浅成作用和热液矿床成因分类[J]. 地学前缘, 2010, 17(2):27-34. CEHN Yan-jing, On epizonogenism and genetic classification of hydrothermal deposits[J]. Earth Science Frontiers, 2010,17(2):27-34.
[3] 王洪黎,李艳军,徐遂勤,等. 浅成低温热液型金矿床若干问题的最新研究进展[J]. 黄金地质, 2009, 30(7):9-13. WANG Hong-li, LI Yan-jun, XU Sui-qin, et al. Latest advances of researches on epithermal gold deposits[J]. Gold Geology, 2009, 30(7):9-13.
[4] 肖爱芳,黎敦朋. 福建省紫金山复式花岗岩锆石LA-ICP-MS U-Pb测年[J]. 东华理工大学学报(自然科学版), 2012, 35(4):343-351. XIAO Ai-fang, LI Dun-peng. LA-ICP-MS U-Pb dating of zircon from Zijinshan complex massif, Fujian Province[J]. Journal of East China Institute of Technology (Natural Science), 2012,35(4):345-351.
[5] 于波,裴荣富,邱小平,等. 福建紫金山矿田中生代岩浆岩演化序列研究[J]. 地球学报, 2013, 34(4):437-446. YU Bo, PEI Rong-fu, QIU Xiao-ping, et al. The evolution series of Mesozoic magmatic rocks in the Zijinshan Orefield, Fujian Province[J]. Acta Geoscientica Sinica, 2013,34(4):437-446.
[6] 王永. 黑龙江金厂金矿岩浆穹隆内矿体流体地球化学特征及矿床成因探讨:硕士学位论文[D]. 北京:中国地质大学, 2006. WANG Yong. Magmatism and metallogenesis of Jinchang gold deposit in Heilongjiang, China:master's degree thesis[D]. Beijing:China University of Geosciences, 2006.
[7] 李山坡. 黑龙江省金厂金矿岩石矿物学特征及金矿床成因探讨:以18号矿体为例:硕士学位论文[D]. 北京:中国地质大学, 2010. LI Shan-po. Discussion for petrology and mineralogy character of Jinchang gold deposit and genesis of ore bodies in Heilongjiang Province:example for 18th ore body:master's degree thesis[D]. Beijing:China University of Geosciences, 2010.
[8] 贾国志,陈锦荣,杨兆光,等. 金厂特大型金矿床的地质特征与成因研究[J]. 地质学报, 2005, 79(5):661-670. JIA Guo-zhi, CHEN Jin-rong, YANG Zhao-guang, et al. Geology and genesis of the superlarge Jinchang gold deposit[J]. Acta Geologica Sinica, 2005, 79(5), 661-670.
[9] 赵玉锁,闫家盼,赵由之,等. 黑龙江省东宁县金厂斑岩铜金成矿系统与成矿预测[J]. 矿物学报, 2013, 33(增刊2):79. ZHAO Yu-suo, YAN Jia-pan, ZHAO You-zhi, et al. Porphyry copper-gold deposit metallogenic system and prediction of Jinchang gold deposit in Dongning County, Heilongjiang Province[J]. Acta Mineralogica Sinica, 2013,33(S2):79.
[10] 罗志波,张华锋,李胜荣. 黑龙江省金厂金矿石英闪长玢岩固结温压条件及其深部预测[J]. 矿物岩石, 2012, 32(1):1-7. LUO Zhi-bo, ZHANG Hua-feng, LI Sheng-rong. Solidfied conditions of quartz-diorite porphyrites in the Jinchang gold deposit, Heilongjiang, Northeast China:implication gold prospective exploration[J]. Journal of Mineralogy and Petrology, 2012, 32(1):1-7.
[11] 张敬陆. 从闪长岩类与金矿的关系谈金矿的岩浆成矿机理[J]. 黄金地质科技, 1989(2):71-76. ZHANG Jing-lu. Discussion on the magmatic metallogenic mechanism of gold deposits from the relationship between diorite and gold deposits[J]. Gold Geology Technology, 1989(2):71-76.
[12] 刘才伟. 福建政和地区地质构造特征及成矿作用:硕士学位论文[D].成都:成都理工大学, 2016. LIU Cai-wei. The geological characters and mineralization of Zhenghe area in Fujian Province:master's degree thesis[D]. Chengdu:Chengdu University of Technology, 2016.
[13] 刘乃忠. 闽北政和-建瓯地区中生代金矿成矿机制研究及找矿潜力评价:博士学位论文[D]. 北京:中国地质大学, 2016. LIU Nai-zhong. The metallogenic mechanism research and prospecting potential evaluation of Mesozoic gold in Zhenghe-Jianou area, Minbei:doctor's degree thesis[D]. Beijing:China University of Geosciences, 2016.
[14] 王玉往,叶天竺,王京彬,等. 我国主要成矿地质作用及常见矿床类型[J]. 矿产勘查, 2014, 5(2):111-123. WANG Yu-wang, YE Tian-zhu, WANG Jing-bin, et al. Main metallogenetic geological processes and conventional deposit types in China[J]. Mineral Exploration, 2014, 5(2):111-123.
[15] 王海滨. 福建省政和湖屯至建瓯东游地区岩金矿成矿规律及其找矿方向:硕士学位论文[D]. 北京:中国地质大学, 2013. WANG Hai-bin. Metallogenic regularity and prospecting direction of gold deposits between Hudun of Zhenghe area and Dongyou of Jian'ou area, Fujian Province:master's degree thesis[D]. Beijing:China University of Geosciences, 2013.
[16] 黄树峰,唐孝文. "熊山岩体"的基本特征及其成因问题讨论[J]. 福建地质, 1987,6(3):213-226. HUANG Shu-feng, TANG Xiao-wen. The general characteristics of Xiongshan rock mass and discussion on its genesis[J]. Geology of Fujian, 1987,6(3):213-226.
[17] Yuan H L,Gao S,Liu X M, et.al. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry[J]. Geostandards and Geoanalytical Research,2004,28(3):353-370.
[18] 任胜利,李继亮,周新华,等. 闽北熊山岩墙群的年代学、岩石地球化学研究及其大地构造意义[J]. 中国科学(地球科学), 1997, 27(2):115-120. REN Sheng-li, LI Ji-liang, ZHOU Xin-hua, et al. Geochronology, geochemistry and tectonic implications of Xiongshan diabasic dike swarm,northern Fujian[J]. Scientia Sinica(Terrae),1997, 27(2):115-120.
[19] 马昌前,明厚利,杨坤光.大别山北麓的奥陶纪岩浆弧:侵入岩年代学和地球化学证据[J].岩石学报,2004, 20(3):393-402. MA Chang-qian, MING Hou-li, YANG Kun-guang. An Ordovician magmatic arc at the northern foot of Dabie mountains:evidence from geochronology and geochemistry of intrusive rocks[J]. Acta Petrologica Sinica, 2004, 20(3):393-402.
[20] 陈多福,陈光谦,陈先沛. 贵州瓮福新元古代陡山沱期磷矿床铅同位素特征及来源探讨[J].地球化学,2002,31(1):49-55. CHEN Duo-fu, CHEN Guang-qian, CHEN Xian-pei. Lead isotope geochemistry of Wengfu phosphorite deposits of Doushantuo age of Neoproterozoic and its application[J]. Geochimica,2002,31(1):49-55.
本刊中的类似文章
1.廖宇斌, 李碧乐, 孙永刚, 杨佰慧, 高歌悦, 刘国文.柴达木盆地北缘锡铁山铅锌矿区辉长岩锆石U-Pb年代、岩石地球化学和Hf同位素特征[J]. 世界地质, 2020,39(3): 495-508
2.何泽宇, 申俊峰, 王来明, 李国武, 刘汉栋, 张华锋, 杜佰松, 吴晋超.胶东宋家沟金矿中基性脉岩锆石U-Pb年代学、地球化学及其地质意义[J]. 世界地质, 2020,39(3): 509-527
3.贾雨东, 王德海, 王新宇, 巴燕·夏木提汗, 郭忆茹.天津蓟州雾迷山组与洪水庄组沉积环境与地球化学特征[J]. 世界地质, 2020,39(3): 569-577
4.李晓鹏, 孙景贵, 刘阳, 王清海, 任泽宁, 谷小丽.延边闹枝铜金矿区中生代火山岩锆石U-Pb年代学、地球化学及其地质意义[J]. 世界地质, 2020,39(3): 528-543
5.王颖, 徐仲元, 董晓杰, 王师捷, 石强.内蒙古得耳布尔地区中生代中-晚期火山岩的年代学、地球化学特征及其地质意义[J]. 世界地质, 2020,39(2): 261-281
6.陈木森, 董永胜, 王鹏森, 王成志.辽东黄花甸地区古元古代变辉绿岩的特征及成因[J]. 世界地质, 2020,39(2): 306-321
7.陈海潮, 王璞珺, 衣健, 武成智, 王寒非, 孙松, 王文华.长白山火山碎屑喷出物和熔岩地球化学特征及其对构造环境的指示意义[J]. 世界地质, 2020,39(2): 294-305
8.高煜, 郝宇杰, 任云生, 史雨凡, 孙振明, 王崇一.黑龙江佳木斯地块兴东群大盘道组碎屑锆石U-Pb定年及其地质意义[J]. 世界地质, 2020,39(1): 16-29
9.沈莽庭, 徐鸣, 高天山, 姚仲友, 周延.巴西圣弗朗西斯科克拉通Ibitiara岩体的锆石U-Pb年代学、地球化学特征及地质意义[J]. 世界地质, 2020,39(1): 1-15
10.孙永刚, 李碧乐, 王聚胜, 王永胜, 张旭, 詹天宇.吉林中部江密峰花岗闪长岩锆石U-Pb年代学和岩石地球化学特征[J]. 世界地质, 2019,38(4): 931-943
11.武昕普, 柳蓉, 张坤, 赵康安, 韩佳兵.银额盆地下白垩统巴音戈壁组含油页岩岩系地球化学特征及有机质富集条件[J]. 世界地质, 2019,38(4): 1021-1031
12.仝立华, 郝国丽, 杨孝杰, 邰文超, 李锋, 徐银波, 刘轶松, 王洁宁.地表油气地球化学技术在油砂勘探中的应用:以松辽盆地西斜坡小太平山为例[J]. 世界地质, 2019,38(4): 1063-1072
13.申林, 刘招君, 胡菲, 李建国, 赵丁名, 万涛.松辽盆地大庆长垣南端上白垩统四方台组古环境特征及演化[J]. 世界地质, 2019,38(4): 988-998
14.贾海明, 景妍, 王清海, 兰丽雪, 井佳浩.大兴安岭中段罕达盖地区早白垩世花岗岩的成因及其地质意义[J]. 世界地质, 2019,38(4): 921-930
15.马东梅, 彭晓蕾, 佟悦鹏, 刘国卿.辽宁杨家杖子钼矿尾矿砂矿物组成及地球化学特征[J]. 世界地质, 2019,38(3): 746-758

Copyright by 世界地质