[an error occurred while processing this directive] 世界地质 2020, 39(1) 1-15 DOI:   10.3969/j.issn.1004-5589.2020.01.001  ISSN: 1004-5589 CN: 22-1111/P

本期目录 | 下期目录 | 过刊浏览 | 高级检索                                                            [打印本页]   [关闭]
基础地质
扩展功能
本文信息
Supporting info
PDF(9155KB)
[HTML全文]
参考文献[PDF]
参考文献
服务与反馈
把本文推荐给朋友
加入我的书架
加入引用管理器
引用本文
Email Alert
文章反馈
浏览反馈信息
本文关键词相关文章
锆石U-Pb定年
地球化学特征
构造环境
Ibitiara岩体
圣弗朗西斯科克拉通
巴西
本文作者相关文章
沈莽庭
徐鸣
高天山
姚仲友
周延
PubMed
Article by Shen M
Article by Xu M
Article by Gao T
Article by Yao Z
Article by Zhou Y
巴西圣弗朗西斯科克拉通Ibitiara岩体的锆石U-Pb年代学、地球化学特征及地质意义
沈莽庭, 徐鸣, 高天山, 姚仲友, 周延
中国地质调查局南京地质调查中心, 南京 210016
摘要: Ibitiara岩体出露在南美巴西中东部巴伊亚州São Francisco克拉通内,岩性为花岗闪长岩,属于壳幔岩浆混合作用形成的准铝质-弱过铝质钙碱性I型花岗岩。地球化学研究表明该花岗闪长岩富集Ba等大离子亲石元素(LILE)和不相容元素U、Th等,强烈亏损高场强元素(HFSE)Nb、P、Ti等,为富硅、高钾钙碱性岩系列,稀土元素显示轻微负Eu异常,轻重稀土分馏相对明显,富集轻稀土,配分曲线呈明显右倾稀土配分模式。锆石SHRIMP U-Pb测试Ibitiara岩体形成年代为2 103 ±8 Ma,为古元古代层侵纪晚期—造山纪早期岩浆活动的产物。该岩体形成年龄与亚马逊构造旋回(2.1 Ga±)岩浆活动区域构造背景相呼应,可能为哥伦比亚超大陆聚合增生大西洋陆块群岩浆活动的产物。
关键词 锆石U-Pb定年   地球化学特征   构造环境   Ibitiara岩体   圣弗朗西斯科克拉通   巴西  
Zircon U-Pb geochronology, geochemical characteristics and geological implication of Ibitiara pluton from São Francisco Craton in Brazil
SHEN Mang-ting, XU Ming, GAO Tian-shan, YAO Zhong-you, ZHOU Yan
Nanjing Center of China Geological Survey, Nanjing 210016, China
Abstract: Ibitiara pluton is outcropped in São Francisco Craton in Bahia, central and eastern Brazil, South America. The intrusive rocks are mainly composed of granodiorite, which falls into the metaluminous to weakly peraluminous calcium-alkaline I-type granites formed by the mixing of crustal and mantle magma. Geochemical studies indicate that the granodiorite is characterized by the enrichment in large ion lithophile elements(LILE)(e.g., Ba) and incompatible elements (e.g., U and Th). But depletion in high field strength elements(HFSE)(e.g.,Nb, P and Ti). It has the features of high SiO2 and high potassium calc-alkaline series. It also shows high fraction of LREE and HREE, and enrichment of LREE, with weak Eu anomaly. The REE distribution curve is obviously right-inclined. SHRIMP U-Pb age suggests that Ibitiara pluton granodiorite is defined as 2 103±8 Ma, which is the product of magmatic activity from Late Rhyacian to Early Orosirian of Paleoproterozoic. The age of the rock mass is consistent with the magmatic tectonic setting of the Amazonian structural cycle (around 2.1 Ga) in the São Francisco Craton. Ibitiara pluton also belonged to the component of the Columbia supercontinent and was possible to be the product of magmatic activity of Atlantic continental blocks.
Keywords: zircon U-Pb dating   geochemical characteristics   tectonic environment   Ibitiara pluton   São Francisco Craton   Brazil  
收稿日期 2019-08-26 修回日期 2019-11-16 网络版发布日期  
DOI: 10.3969/j.issn.1004-5589.2020.01.001
基金项目:

中国地质调查局南京地质调查中心地质调查项目(DD20190441、12120115068301、DD20160110、DD20160038)

通讯作者: 徐鸣(1982),男,主要从事基础地质综合研究。E-mail:738197864@qq.com
作者简介:
作者Email: 738197864@qq.com

参考文献:
[1] Heilbron M, Cordani U G, Alkmim F F. The São Francisco Craton and its margins[C]//São Francisco Craton, eastern Brazil. Springer, 2017:3-13.
[2] Santos-Pinto M, Peucat J J, Martin H,et al. Crustal evolution between 2.0 and 3.5 Ga in the southern Gavião block (Umburanas-Brumado-Aracatu region), São Francisco Craton, Brazil:a 3.5~3.8 Ga proto-crust in the Gavião block?[J].Journal of South American Earth Sciences, 2012,40:129-142.
[3] Cruz S C P, Barbosa J S F, Pinto M S, et al. The Siderian-Orosirian magmatism in the Gavião Paleoplate, Brazil:U-Pb geochronology, geochemistry and tectonic implications[J]. Journal of South American Earth Sciences, 2016,69:43-79.
[4] Medeiros E L M, Cruz S C P, Barbosa J S F, et al. The Santa Izabel complex, Gavião block, Brazil:components, geocronology, regional correlations and tectonic implications[J]. Journal of South American Earth Sciences, 2017,80:66-94.
[5] Teixeira W, Oliveira E P, Marques L S. Nature and evolution of the Archean crust of the São Francisco Craton[C]//São Francisco Craton, eastern Brazil. Springer,2017:29-56.
[6] Luiz A B, Carlos S,Roberta M V, et al. Geologia, tectônica e recursos minerais do Brasil[M]. Brasília:CPRM-Serviço Geológico do Brasil, 2003:227-334.
[7] Alain C, Michèle R. Laser ablation coupled with ICP-MS applied to U-Pb zircon geochronology:a review of recent advances[J]. Gondwana Research, 2008(14):597-608.
[8] Cordani U G, Sato K, Teixeira W, et al. Crustal evolution of the South American platform[J]. Tectonic Evolution of South America,2000,1(1):19-40.
[9] Almeida F F M de. O cráton do São Francisco[J]. Revista Brasileirade Geociências,1977,7(4):349-364.
[10] Johnson T E, Kirkland C L, Gardiner N J, et al. Secular change in TTG compositions:implications for the evolution of Archaean geodynamics[J]. Earth and Planetary Science Letter, 2019,505:65-75.
[11] Black L P, Culson B L. The age of the mud tank carbonatite, strangways range, northern territory[J]. BMR J Aust Geophys, 1978(3):227-232.
[12] Hu Z C, Gao S, Liu Y S, et al. Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas[J]. Journal of Analytical Atomic Spectrometry,2008(23):1093-1101.
[13] Liu Y S, Hu Z C, Gao S,et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008,257(1/2):34-43.
[14] Liu Y, Gao S, Hu Z, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths[J]. Journal of Petrology, 2010(51):537-571.
[15] Liu Y, Hu Z, Zong K, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010,55(15):1535-1546.
[16] Ludwig K R. Isoplot 3.00:a geochronological toolkit for microsoft excel[M].Berkeley:Berkeley Geochronology Center, 2003:1-74.
[17] Andersen T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002,192(1/2):59-79.
[18] Hoskin P W O. Patterns of chaos:fractal statistics and the oscillatory chemistry of zircon[J]. Geochimica et Cosmochimica Acta, 2000,64(11):1905-1923.
[19] Hoskin P W O,Ireland T R.Rare earth element chemistry of zircon and its use as a provenance indicator[J].Geology,2001,28(7):627-630.
[20] Hoskin P W O,Schaltegger U.The composition of zircon and igneous and metamorphic petrogenesis[J]. Reviews in Mineralogy and Geochemistry,2003,53(1):27-62.
[21] Hanchar J M,Westrenen W V.Rare earth element behavior in zircon-melt systems[J].Elements,2007(3):37-42.
[22] 曹烨,李胜荣,李真真,等.太行山北段石湖金矿区中生代岩浆岩中单颗粒锆石的稀土元素特征及启示[J].中国稀土学报,2009,27(4):564-573. CAO Ye, LI Sheng-rong, LI Zhen-zhen, et al. Characteristics of rare earth elements of zircon from Mesozoic magmatic rocks in Shihu gold district, North Taihang Mountain, North China[J].Journal of the Chinese Rare Earth Society, 2009,27(4):564-573.
[23] 张宏,袁洪林,胡兆初,等.冀北滦平地区中生代火山岩中单颗粒锆石的稀土元素特征及启示[J].中国稀土学报,2006,24(2):227-234. ZHANG Hong, YUAN Hong-lin, HU Zhao-chu, et al. Characteristics of rare earth elements of zircons from Mesozoic volcanic rocks in Luanpin North Hebei and its application[J]. Journal of the Chinese Rare Earth Society, 2006,24(2):227-234.
[24] Boynton W V. Geochemistry of the rare earth elements:meteorite studies[C]//Henderson P. Rare Earth Element Geochemistry. Amsterdam:Elsevier Science,1984:63-114.
[25] Peccerillo R, Taylor S R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contribution to Mineralogy Petrology, 1976,58(1):63-81.
[26] 黎彤,袁怀雨,吴胜昔.中国花岗岩类和世界花岗岩类平均化学成分的对比研究[J].大地构造与成矿学,1998,22(1):29-34. LI Tong, YUAN Huai-yu, WU Sheng-xi. On the average chemical composition of granitoids in China and the world[J].Geoteconica et Metallogenia, 1998,22(1):29-34.
[27] 邓晋福,赵海玲,莫宣学.中国大陆根-柱构造:大陆动力学的钥匙[M].北京:地质出版社,1996:15-21. DENG Jin-fu,ZHAO Hai-ling, MO Xuan-xue. China's continental roots-plume tectonics:the key to continental dynamics[M]. Beijing:Geological Publishing House,1996:15-21.
[28] Chappell B W,White A J R.Two contrasting granite types[J].Pacific Geology,1974(8):173-174.
[29] Collins W, Beams S, White A, et al. Nature and origin of A-type granites with particular reference to southeastern Australia[J]. Contributions to Mineralogy and Petrology, 1982, 80(2):189-200.
[30] Gao S,Luo T C,Zhang B R, et al. Chemical composition of the continental crust as revealed by study in East China[J].Geochemica et Cosmochimica Acta, 1998,62(11):1959-1975.
[31] Chappell B W.Aluminium saturation in I-and S-type granites and the characterization of fractionated haplogranites[J].Lithos,1999,46(3):535-551.
[32] Batchelor R A, Bowden P. Petrogenetic interpretation of granitoid rock series using multicationic parameters[J].Chemical Geology, 1985,48(1/4):43-55.
[33] Pearce J A,Lippard S J,Roberts S. Characteristics and tectonic significance of supra-subduction zone ophiolites[C]//Kokelaar B P, Howells M F. Marginal basin geology. Geological Society of London Special Publication, 1984(16):77-94.
[34] Pearce J A,Harris B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretations of granitic rocks[J]. Journal of Petrology, 1984(25):956-983.
[35] 陆松年,杨春亮,李怀坤, 等. 华北古大陆与哥伦比亚超大陆[J].地学前缘,2002,9(4):225-232. LU Song-nian, YANG Chun-liang, LI Huai-kun, et al.North China continent and Columbia supercontinent[J]. Earth Science Frontiers, 2002,9(4):225-232.
[36] Zhai M, Guo J, Liu W. Neoarchean to Paleoproterozoic continental evolution and tectonic history of the North China Craton:a review[J].Journal of Asian Earth Sciences, 2005(24):547-561.
[37] Zhao G C, Cawood P A, Wilde S A, et al. Review of global 2.1~1.8 Ga orogens:implications for a pre-Rodinia supercontinent[J].Earth-Science Reviews,2002,59(1/4):125-162.
[38] 董永观, 曾勇, 姚春彦,等.南美地台地质构造演化与主要金属矿产成矿作用[J].资源调查与环境, 2015, 36(2):116-122. DONG Yong-guan,ZENG Yong,YAO Chun-yan,et al.Geological tectonic evolution and mineralization of metallic minerals in the South America platform[J].Resources Survey and Environment,2015, 36(2):116-122.
[39] Silva L C da, Pedrosa Soares A C P, Noce C M, et al. Contrasting crustal evolution patterns in the eastern Archean basement and rhyacian belts of the São Francisco Craton (SFC), NE Brazil, from a SHRIMP U-Pb zircon perspective[C]. Simpósio 45 Anos de Geocronologia no Brasil. São Paulo.Boletim de Resumos Expandidos. USP, 2009:16-25.
[40] Silva L C da, Noce C M, Pedrosa-Soares A C, et al. On the amalgamation and dispersion of the São Francisco-Congo paleocontinent[C]//23rd Colloquium of African Geology (CAG23).Johannesburg, 2011:93.
[41] Silva L C da, McNaughton N J, Armstrong R,et al. The Neoproterozoic mantiqueira province and its African connections:a zircon-based U-Pb geochronologic subdivision for the Basiliano/Pan-African systems of orogens[J]. Precambrian Research, 2005,136(3/4):203-240.
[42] Porada H. Pan-African rifting and orogenesis in southern to equatorial Africa and eastern Brazil[J]. Precambrian Research, 1989,44(2):103-136.
[43] Pearce J A,Haltis H B W,Tindele A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J].Journal of Petrology,1984(25):956-981.
[44] 张旗,潘国强,李承东,等.花岗岩构造环境问题:关于花岗岩研究思考之三[J].岩石学报,2007,23(11):2683-2698. ZHANG Qi,PAN Guo-qiang,LI Cheng-dong, et al. Are discrimination diagrams always indicative of correct tectonic settings of granites? some crucial questions on granite study(3)[J]. Acta Petrologica Sinica, 2007,23(11):2683-2698.
[45] Teixeira J B G, Misi A, Silva M G. Supercontinent evolution and the Proterozoic metallogeny of South America[J]. Gondwana Research, 2007, 11(3):346-361.
[46] Barbosa J S F, Sabaté P. Archean and Paleoproterozoic crust of the São Francisco Craton, Bahia, Brazil:geodynamic features[J]. Precambrian Research, 2004, 133(1/2):1-27.
本刊中的类似文章
1.李晓鹏, 孙景贵, 刘阳, 王清海, 任泽宁, 谷小丽.延边闹枝铜金矿区中生代火山岩锆石U-Pb年代学、地球化学及其地质意义[J]. 世界地质, 2020,39(3): 528-543
2.陈海潮, 王璞珺, 衣健, 武成智, 王寒非, 孙松, 王文华.长白山火山碎屑喷出物和熔岩地球化学特征及其对构造环境的指示意义[J]. 世界地质, 2020,39(2): 294-305
3.王颖, 徐仲元, 董晓杰, 王师捷, 石强.内蒙古得耳布尔地区中生代中-晚期火山岩的年代学、地球化学特征及其地质意义[J]. 世界地质, 2020,39(2): 261-281
4.武昕普, 柳蓉, 张坤, 赵康安, 韩佳兵.银额盆地下白垩统巴音戈壁组含油页岩岩系地球化学特征及有机质富集条件[J]. 世界地质, 2019,38(4): 1021-1031
5.黄清华, 白雪峰, 王辉, 程宏岗, 朱政源.内蒙古林西地区中上二叠统界线碳酸盐岩微量元素和稀土元素地球化学特征及其地质意义[J]. 世界地质, 2019,38(3): 611-622
6.马东梅, 彭晓蕾, 佟悦鹏, 刘国卿.辽宁杨家杖子钼矿尾矿砂矿物组成及地球化学特征[J]. 世界地质, 2019,38(3): 746-758
7.李湜先, 赵庆英, 邱士龙, 郑泽宇.大兴安岭北段吉源地区白音高老组流纹岩锆石U——Pb年龄及地球化学特征[J]. 世界地质, 2019,38(1): 108-118
8.全昳糠, 霍腾飞, 杨冬红, 刘金民.鲁西郯城蛇纹岩微量元素和锆石U-Pb年代学:对华北陆块东部岩石圈地幔改造的启示[J]. 世界地质, 2019,38(1): 58-67
9.鞠楠, 张森, 毕中伟, 任云生, 石蕾, 张迪, 顾玉超, 孙求实.辽宁凤城赛马铌矿床成矿岩体地球化学特征及其地质意义[J]. 世界地质, 2019,38(1): 130-139,153
10.刘帅, 郭巍, 李文强.黑龙江省勃利盆地东部坳陷下白垩统穆棱组古环境恢复[J]. 世界地质, 2018,37(4): 1309-1316
11.刘峰岩, 和钟铧, 高龙飞, 陆凯杰.内蒙古索伦地区黄土达坂花岗岩形成时代、地球化学特征及构造背景[J]. 世界地质, 2018,37(3): 761-776
12.王春光, 孙国胜, 孙九达, 牛军平, 张锐, 王子维, 夏磊.内蒙古荷尔勿苏铅锌矿区二叠纪侵入岩成因:锆石U-Pb年代学与岩石地球化学制约[J]. 世界地质, 2018,37(3): 737-746,760
13.秦亚, 杨启军, 李程, 周叔齐, 许浩天.广西岑溪地区糯垌岩体中岩石包体的岩石学、地球化学特征及其意义[J]. 世界地质, 2018,37(3): 777-790
14.句高, 梁一鸿, 孙晓, 周静.张广才岭南段两个侏罗纪花岗岩体的地球化学特征及其地质意义[J]. 世界地质, 2018,37(2): 374-384
15.刘一珉, 任收麦, 郭天旭, 王浩, 周志, 王胜建, 丁海生.柴北缘构造带深部岩石的LA-ICP-MS锆石U-Pb年龄及微量元素研究:对全吉地块基底演化的启示[J]. 世界地质, 2018,37(2): 334-351

Copyright by 世界地质