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Abstract: Model performance assessment is a key procedure for mineral potential mapping，but the correspond-
ing research achievements are seldom reported in literature． Cumulative gain and lift charts are well known in
the data mining community specialized in marketing and sales applications and widely used in customer churn
prediction for model performance assessment． In this paper，they are introduced into the field of mineral poten-
tial mapping for model performance assessment． These two charts can be viewed as a graphic representation of
the advantage of using a predictive model to choose mineral targets． A cumulative gain curve can represent how
much a predictive model is superior to a random guess in mineral target prediction． A lift chart can express how
much more likely the mineral targets predicted by a model are deposit-bearing ones than those by a random se-
lection． As an illustration，the cumulative gain and lift charts are applied to measure the performance of weights
of evidence，logistic regression，restricted Boltzmann machine，and multilayer perceptron in mineral potential
mapping in the Altay district in northern Xinjiang in China． The results show that the cumulative gain and lift
charts can visually reveal that the first three models perform well while the last one performs poorly． Thus，the
cumulative gain and lift charts can serve as a graphic tool for model performance assessment in mineral potential
mapping．
Key words: cumulative gain and lift charts; mineral potential mapping performance assessment; weights of evi-
dence; logistic regression; restricted boltzmann machine; multilayer perceptron

1 Introduction
Mineral potential mapping is a key step to distin-

guish mineral targets in an area of interest in mineral
exploration． A variety of approaches have been repor-
ted in the literature，such as weights of evidence or
WofE ( Agterberg，1990，1992; Agterberg et al．，
1990; Bonham-Carter et al．，1988，1989; Carranza ＆
Hale，2002a; Nyknen et al．，2008; Tangestani ＆
Moore，2001; Xu et al．，1992) ，logistic regression or

LGＲ ( Agterberg，1974，1989; Agterberg and Bon-
ham-Carter，1999; Carranza ＆ Hale，2001; Chen et
al．，2011; Nyknen et al．，2008 ) ，restricted Boltz-
mann machines or ＲBM ( Chen，2014 ) ，and multi-
layer perceptron or MLP ( Skabar，2007 ) ，to name
only a few． However，the techniques for assessing the
performance of mineral potential mapping models are
seldom reported in the literature． Model performance
assessment is a measure of accuracy of mineral poten-
tial mapping results． It provides a feasible way to



compare the effectiveness of different mineral potential
mapping models． Thus，it is necessary to set up com-
mon techniques to assess the performance of mineral
potential mapping models in mineral exploration．

Cumulative gain and lift charts are well known in
the data mining community specialized in marketing
and sales applications ( Berry ＆ Linoff，1999 ) and
widely used in customer churn prediction for model
performance assessment ( Anjum，2014; Piatetsky-
Shapiro and Steingold，2000; Verbeke et al．，2011;
Xie et al．，2009 ) ． The class imbalance data used in
customer churn prediction ( Burez ＆ Van den Poel，
2009; Japkowicz，2000) are quite similar to the mult-
ivariate data used in mineral potential mapping．
Therefore，the cumulative gain and lift charts are in-
troduced into the field of mineral potential mapping for
model performance assessment． For demonstration
purpose，the cumulative gain and lift charts are ap-
plied to evaluate the performance of WofE，LGＲ，
ＲBM，and MLP models in mineral potential mapping
in the Altay district in northern Xinjiang in China．
The result illustrates that the cumulative gain and lift
charts can serve as a graphic tool for the model per-
formance assessment in mineral potential mapping．
The theory of cumulative gain and lift charts is intro-
duced in Section 2 and the method based on the cu-
mulative gain and lift charts for the performance as-
sessment of mineral potential mapping models is dis-
cussed in Section 3． A case study follows in Section 4
and finally the conclusion．

2 Cumulative gain and lift charts
In dealing with a binary classification problem，

one class can be always labeled as a positive and the
other one as a negative class． Assume that the test set
consists of p positive and n negative examples． A clas-
sifier assigns a class label to each of them，but some
of the assignments are wrong． To assess the classifica-
tion results，the number of true positive ( tp ) ，true
negative ( tn) ，false positive ( fp) ( actually negative，
but classified as positive ) and false negative ( fn )
( actually positive，but classified as negative) exam-

ples can be counted． They satisfy
tp + fn = p; tn + fp = n ( 1)

The classifier assigned tp + fp examples to the
positive class and tn + fn examples to the negative
class． The following measures can be defined:

fprate = 1 － specificity = fn
n ( 2)

tprate = sensitivity = tp
p ( 3)

yrate = tp + fp
p + n ( 4)

lift = tprate
yrate = sensitivity
( tp + fp) / ( p + n) ( 5)

The fprate measures the fraction of negative ex-
amples that are misclassified as positive ones． The
tprate or sensitivity measures the fraction of positive
examples correctly classified． The yrate measures the
fraction of examples that are classified as positive
ones． The lift is a measure of the effectiveness of a
model calculated as the ratio between the results ob-
tained with and without the model．

A classification model is a function that f: X→
［0，1］maps each example x to a real number f( x) ．
Usually，a threshold t is chosen for which the exam-
ples where f( x) ≥ t are considered positive examples
and the others are considered negative examples． This
implies that each pair of a classifier and threshold t
defines a binary classifier． Thus，a binary classifier
system can be obtained by varying threshold t．

A cumulative gain curve is a graphical plot which
illustrates performance of the binary classifier system
as its discrimination threshold t is varied． It is created
by plotting the sensitivity against the yrate at various
threshold settings．

In a cumulative gain curve，each binary classifier
for a given test set of examples is represented by a
point ( yrate，tprate) ． By varying the threshold of the
classifier，a set of binary classifiers represented with a
set of points on the chart are obtained． It gives a
graphic interpretation of what percentage of examples
one has to target to reach a certain percentage of all
positive examples． A purely random model is presen-
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ted by a point on the baseline through ( 0，0 ) and
( 100%，100% ) ( Fig． 1) ．

The position and shape of a cumulative gain
curve depend on the classification result and the per-
centage of positive examples in a test set． In the
yrate-tprate space， if the classification is perfect

( one-hundred percent of test examples are correctly
classified) ，the cumulative gain curve is located near
to the tope left corner ( Fig． 1 ) ; and the lower the
percentage of positive examples is，the nearer to the
tope left corner the cumulative gain curve of the per-
fect classification is located ( Fig． 1b) ．

F ig． 1 Cumulative gain curves for a test set of examples with ( a) ten percent positives and ( b) one percent positives

Fig． 2 Cumulative lift charts for a test set of examples with ( a) ten percent positives and ( b) one percent positives

A cumulative lift chart is derived from the corre-
sponding cumulative gain curve． Its horizontal coordi-
nate is the same as that of the cumulative gain chart
and its vertical coordinate is the ratio of vertical coor-

dinate，compared to horizontal coordinate of the cu-
mulative gain curve．

In a cumulative lift chart ( Fig． 2 ) ，a point
( yrate，tprate /yrate) is used to express a binary clas-
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sifier for a given test set of examples． Thus，a set of
points representing a set of binary classifiers with re-
spect to varying thresholds form the cumulative lift
curve that tells how much better a binary classifier
predicts compared to the random selection by compa-
ring the sensitivity to the overall positive rate in the
test set． A purely random selection is presented by a
point on the baseline through ( pp，1 ) and ( 100%，
1) ，here pp denotes the percentage of positive exam-
ples in a test set． As the derived chart of a cumulative
gain curve，the shape of a lift curve is also affected by
the percentage of positive examples． When the per-
centage of positive examples becomes smaller，the lift
curve will become nearer to horizontal and vertical ax-
es as well as the origin ( Fig． 2b) ．

The performance of different models can be dif-
ferentiated by drawing their cumulative gain and lift
charts． It is intuitive that the greater the separation
between the cumulative gain or lift curve and the
baseline，the better the model performs． If one model
has separation across the entire ranking greater than
another model with the same definition of the target
variable，then the dominate model wins．

However，it may not be the case that one model
is strictly dominating over the other in practical situa-
tions． It is easy to imagine that the gain curves of dif-
ferent models may cross． In this situation，the area
under the cumulative gain curve or AUL ( Bekkar et
al．，2013) can be applied to measure the overall per-
formance of different models． Based on the definition
given by Tuffery ( 2005) ，the AUL can be written as

AUL = p
2( p + n) + 1 － p( )p + n

× AUC ( 6)

where: p and n are the number of positive and
negative examples，respectively; and AUC is the area
under the ＲOC curve ( the receiver operating charac-
teristic curve) ( Flach et al．，2011) ． The AUC value
can be estimated by the Wilcoxon Mann-Whitney test
( Bergmann et al．，2000) ． Let xi ( i = 1，2，…，p)
represent the predicted value of the ith positive exam-
ple and yj ( j = 1，2，…，n) represent the predicted
value of the jth negative example． Then，the AUC val-

ue can be estimated by

AUC = 1
pn∑

p

i = 1
∑

n

j = 1
φ( xi，yj ) ( 7)

φ( xi，yi ) =
1， xi ＞ yj
0． 5， xi = yj
0， xi ＜ y

{
j

( 8)

If the classification performance is perfect，the
AUC value is 1 with respect to that the AUL value e-
quals ( 2n + p) / ( 2n + 2p) ; if the classification per-
formance is equivalent to a complete random guess，
both the AUC and AUL values are 0． 5． Usually，an
AUC value falls somewhere between 0． 5 and 1 with
respect to that the corresponding AUL value is in the
interval［0． 5，( 2n + p) / ( 2n + 2p) ］． If p / ( p + n)
is very small，the areas under the two curves are very
close． In all cases，to deduce that a model is superior
to another，it is equivalent to measuring their AUCs or
AULs，i． e．，if AUC1 ＞ AUC2 or AUL1 ＞ AUL2．

3 Mineral potential mapping per-
formance assessment

Deposit-bearing phenomenon in mineral explora-
tion is similar to customer churn in service industry．
Customer churn is a rare event in service industries，
but of great interest and great value． Similarly，depos-
it-bearing is also a rare event in mineral exploration，
but of great interest and great value．

In customer churn prediction，a predictive model
assigns a score to each of customer examples and then
a discrimination threshold is used to classify the cus-
tomer examples into churners and non-churners． The
number of true churners， true non-churners， false
churners and false non-churners can be counted and
used to calculate the measures of yrate，tprate，and
lift． As the discrimination threshold is varied，the
measures of yrates， tprates， and lifts at various
threshold settings can be obtained and used to draw
cumulative gain and lift charts．

In mineral exploration，suppose that the area of
interest has been divided into a set of grid cells． Then
deposit-bearing and non-deposit-bearing cells can be
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identified by superimposing the map of known mineral
deposits over the map of grid cells． The deposit-bear-
ing cells denote those cells in which a known mineral
deposit has been found while non-deposit-bearing cells
are those cells in which no known mineral deposits has
been found． The deposit-bearing and non-deposit-
bearing cells in mineral exploration can be viewed as
the counterparts of churners and non-churners in serv-
ice industries．

In mineral potential mapping，a statistical model
is used to predict deposit-bearing favorability of each
cell and a threshold is used to separate mineral target
cells from the grid cell population． The mineral target
and non-mineral target cells are the predicted deposit-
bearing and non-deposit bearing cells，respectively．
Ｒeferring to the method of model performance assess-
ment in customer churn prediction，the number of true
deposit-bearing，true non-deposit-bearing，false de-
posit-bearing，and false non-deposit-bearing cells can
be counted and used to compute the measures of
yrate，tprate，and lift． By varying the threshold，the
measures of yrates， tprates， and lifts at various
threshold settings can be obtained and used to draw
cumulative gain and lift charts．

Choosing a set of threshold values is the key step
for drawing the cumulative gain and lift charts in min-
eral potential mapping． It is reasonable to suppose
that k thresholds evenly distributed between the mini-
mum and maximum values of the deposit-bearing fa-
vorability predicted by the model． Then the increment
between two neighboring thresholds can be determined
by

Δ = ( fmax － fmin) / k， ( 9)
where fmax and fmin are the maximum and mini-

mum values of the deposit-bearing favorability predic-
ted by the model． These two values can serve as the
first and last thresholds，respectively． Then the j th
( j = 1，2，…，k) threshold can be computed by

fj = fmin + Δ* ( k － j) ( 10)
The cumulative gain and lift charts can graphical-

ly interpret the performance of a mineral potential
mapping model． The farther the cumulative gain and

lift charts of a model are away from the baseline，the
better the model performs． In practice，AULs can be
computed as an overall performance measure in case
different models have quite similar cumulative gain
and lift charts． The larger the AUL of a model，the
better the model performs．

4 Case study
The Altay district in northern Xinjiang in China

is chosen as the study area． The WofE，LGＲ，ＲBM，
and MLP are applied to the mineral potential mapping
and their performance is assessed using cumulative
gain and lift charts．
4． 1 Geological setting and mineral deposits

The study area is located in the Altay orogenic
belt，which is the amalgamated part of the Siberia
plate and the Kazakhstan-Junggar plate ( Li，1996; Li
＆ Zhao，2002) ． During Devonian and Early Carbon-
iferous periods，the south continental margin of the Si-
beria plate became an active continental margin and
formed the geotectonic environment of gutter ( Wulun-
gu trench) -arc ( Kalatongke island arc) -basin ( crane
back arc basin) system due to the subduction of the
Junggar plate ( Li，1996; Li ＆ Zhao，2002) ． In the
process of the Junggar plate subduction，the collision
and amalgamation of the Siberia，Khazakstan，and
Junggar blocks resulted in the evolution of geotectonic
environment that provided good congenital，parturient
and postnatal conditions for polymetallic mineralization
( Zeng et al．，2005 ) ． The Ashele large-sized copper-
zinc deposit，the Duolanasayi large-sized gold depos-
it，and two dozens of other mineral deposits have been
found in the area． Fig． 3 shows the simplified geologic
map with the known mineral deposits and geochemical
sample locations．

The mineralization of copper，gold，and other
metallogenic elements in the study area was closely re-
lated to the Altay orogenic process ( Li，1996; Li ＆
Zhao，2002 ) ． The Ashele copper-zinc deposit was
formed in the Ashele volcanic-sedimentary basin in
the foreland during the orogenic intermittent exten-
sional period; and the Duolanasayi gold deposit was
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formed in the southern margin of the Altay orogenic
belt during the main orogenic period． The volcanic-
magmatic activities，volcanic sedimentation，tectonic-

magmatic activities，and hydrothermal activities in the
Altay orogenic belt are the essential controlling factors
for all the types of mineralization．

Fig． 3 Simplified geologic map with the known mineral deposits and geochemical sample locations

4． 2 Geological map patterns
Based on the discussions in Section 4． 1，it can

be concluded that the tectonic movements，volcanic-
sedimentary activities，magmatic intrusions，and hy-
drothermal activities were genetically related to the
polymetallic mineralization． Consequently， linear
structures，the early-middle Devonian and early Car-
boniferous systems，acidic-neutral magmatic rocks，
and hornfels zones are chosen as geological map pat-
terns．

The likelihood ratios or LＲs ( Chen，2014) were
applied to determine the optimal buffering width of
linear structures． The LＲ is a measure of the spatial
relationship between a map pattern and the known
mineral deposits in a study area． Suppose that the
study area has been divided into a set of grid cells．
Let AＲ and DＲ denote the fraction of the grid cells
within the buffered linear structures and the fraction of
the known mineral deposits within the buffered linear
structures，respectively． Then，LＲ is defined as

LＲ = DＲ /AＲ ( 11)
The values of LＲs are within interval［0，∞ ) ． If

0LＲs1． 0，the buffered linear structures are ap-
proximately equal to the areas chosen by a random
guess; and if LＲs ＞ 1． 0，the buffered linear struc-
tures are better than the areas chosen by a random
guess． According to Eq． ( 11) ，a large LＲ means that
the buffered linear structures are only a small fraction
of the study area but bear a large fraction of the known
mineral deposits．

In our case study，the area is divided into 100 ×
151 grid cells． Except for 6 852 cells located in the
blank area，the other 8 248 cells ( 8 223 non-deposit-
bearing and 25 deposit-bearing cells ) were used to
compute the LＲs of the linear structures buffered dif-
ferent widths． Each buffering width corresponds to one
value of LＲs and the optimal one is with respect to the
maximum value of LＲs． The optimal buffering width
was selected from the following predefined buffering
widths: 0． 01 km，0． 05 km，0． 075 km，0． 1 km，
0． 2 km，0． 3 km，0． 4 km，and 0． 5 km． Fig． 4
shows that the LＲ reaches its maximum value at 0． 075
km． Thus，0． 075 km was the optimal buffering
width． After being buffered，intersections of some of
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the linear structures become apparent． The intersec-
tions of the buffered linear structures serve as a deriv-
ative geological map pattern．

Fig． 4 Diagram of LＲs varying with buffering widths

4． 3 Geochemical map patterns
Au，Ag，Cu，Pb，and Zn serve as the geochemi-

cal indicative elements and the grid data of these five
elements，which match with the grid cells used in
Section 4． 2，are generated using the Golden Software
Surfer．

The LＲ is applied to choose the optimal threshold
for identifying geochemical anomalies． For each ele-
ment，1 000 thresholds were predefined to distribute
uniformly between the minimum and maximum con-
centration values of the element． The LＲ，with re-
spect to each threshold，is computed and the thresh-
old with respect to the maximized LＲ is chosen as the
optimal threshold． Table 1 lists the maximized LＲs
with respect to the optimal thresholds for the five ele-
ments． The delineated geochemical anomalies then
serve as geochemical map patterns．

Table 1 LＲs with respect to the optimal thresholds for
the five geochemical elements

Au Ag Cu Pb Zn

Maximized LＲs 57． 217 36． 411 20． 026 57． 217 400． 520

Optimal thresholds 99． 553 0． 874 360． 260 89． 954 411． 931

4． 4 Map pattern selection
The 8248 cells were used to estimate LＲ of each

map pattern． The estimated LＲs for all the map pat-
terns are listed in Table 2． A map pattern with LＲ
more than one can be selected as a significant map
pattern for mineral potential mapping． From Table 2，
it can be seen that there are nine map patterns with

Table 2 LＲs for the 14 binary map patterns

Map pattern LＲs Map pattern LＲs

Gold geochemical anomaly 86． 143 Acidic magmatic rock 0． 677

Silver geochemical anomaly 54． 818 Neutral magmatic rock 0． 0

Copper geochemical anomaly 30． 150 The Tuokesalei Group 2． 808

Lead geochemical anomaly 86． 143 The Aletai Group 4． 746

Zinc geochemical anomaly 603． 0 The Kangbutiebao Group 0． 0

Hornfels zone 0． 854 The Hongshanzui Group 0． 0

Linear structure 5． 248 Intersection of linear structures 9． 726

LＲs more than one． They are as follows: ( a) gold ge-
ochemical anomaly，( b) silver geochemical anomaly，
( c) copper geochemical anomaly，( d) lead geochem-
ical anomaly，( e) zinc geochemical anomaly，( f) the
buffered linear structures，( g) the middle Devonian

Tuokesalei Group，( h ) the middle Devonian Aletai
Group，and ( i ) the intersections of buffered linear
structures．
4． 5 The WofE modeling

The contingency table test ( Agterberg and
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Cheng，2002) for the nine pairwise map patterns are
implemented and the results are listed in Table 3． It

can be seen that the 9 map patterns basically satisfy
pairwise conditional independent assumption．

Table 3 Pairwise Chi-squared tests for the 9 selected map patterns

( b) ( c) ( d) ( e) ( f) ( g) ( h) ( i)

( a) 0． 3906 0． 3906 0． 3906 0． 3906 0． 0271 1． 1905 0． 2500 0． 3906

( b) 0． 3906 5． 9920 5． 9920 0． 1082 0． 8267 0． 1111 0． 3906

( c) 0． 3906 0． 3906 0． 0271 0． 8267 0． 1111 0． 3906

( d) 5． 9920 0． 1082 0． 8267 0． 1111 0． 3906

( e) 0． 1082 0． 8267 0． 1111 0． 3906

( f) 6． 3131 2． 9264 0． 1082

( g) 13． 7620 0． 8267

( h) 0． 1111

Note: The numbers from ( a) through ( i) are the code numbers of nine selected binary map patterns．

For each map pattern，two weights and their vari-
ances and the variance due to missing data are esti-
mated and listed in Table 4． The posterior probability
and posterior probability deviation maps are shown in
Fig． 5． The new conditional independence test ( Agter-

berg ＆ Cheng，2002) is applied to test overall condi-
tional independence，the estimated T = 30． 238． The
95% confidence limit is 1． 645 × 6． 644 = 10． 929 for
T-n = 30． 238--25 = 5． 238． Thus the conditional inde-
pendence hypothesis should be accepted．

Table 4 Weights，weight variances，and the variances due to missing data of the 9 selected map patterns

Map patterns W + ( W + ) W- ( W-) ( missing)

Gold geochemical anomaly 3． 850 1． 143 － 0． 0400 0． 0418 1． 444e － 05

Silver geochemical anomaly 3． 398 1． 091 － 0． 0395 0． 0418 9． 396e － 06

Copper geochemical anomaly 2． 800 1． 050 － 0． 0384 0． 0418 5． 075e － 06

Lead geochemical anomaly 3． 850 1． 143 － 0． 0400 0． 0418 1． 444e － 05

Zinc geochemical anomaly 5． 796 2． 000 － 0． 0407 0． 0418 5． 990e － 05

Linear structure 1． 052 0． 0917 － 0． 4130 0． 0716 5． 727e － 06

The Tuokesalei Group 0． 427 0． 1440 － 0． 1270 0． 0557 5． 771e － 07

The Aletai Group 0． 951 0． 0672 － 0． 653 0． 1000 6． 930e － 06

Intersection of linear structures 1． 669 1． 016 － 0． 0333 0． 0418 1． 270e － 06

4． 6 LGＲ modeling
In LGＲ model，deposit-bearing probability is ex-

pressed as a function of map patterns． The optimized
regression coefficients can be sought using conjugate
gradient ( CG) optimization of a log-linear model． U-
sually，this algorithm can obtain a group of nearly op-
timized regression coefficients after 20 times of itera-
tions．

The 8 248 cells were used to establish a LGＲ
model． The CG algorithm was used to seek the opti-
mized regression coefficients． After 50 times of itera-
tions，the optimized regression coefficients were ob-
tained ( Table 5 ) ． The deposit-bearing probability
map is shown in Fig． 6．
4． 7 ＲBM modeling

In mineral potential mapping，a ＲBM can be
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Fig． 5 Posterior probability map ( a) and posterior probability deviation map ( b)

Table 5 Estimated constant and regression coefficients

Map patterns Ｒegression coefficients

Constants － 3． 763

Gold geochemical anomaly 1． 319

Silver geochemical anomaly 0． 506

Copper geochemical anomaly 1． 027

Lead geochemical anomaly 0． 578

Zinc geochemical anomaly 0． 951

Linear structure 0． 484

The Tuokesalei Group 0． 934

The Aletai Group 1． 096

Intersection of linear structures 0． 169

Fig． 6 Deposit-bearing probability maps after 50 itera-
tions

trained for capturing the general features of the
training cells． Based on a trained ＲBM， average
square contribution or ASC and average square error or
ASE can be computed and their thresholds can be de-
fined ( Chen，2014) ． The training cells with the val-
ues of ASC or ASE more than the threshold are recog-

nized as mineral targets． In practice，it is difficult to
determine whether a training ＲBM is really con-
verged． Empirically，a ＲBM can become approxi-
mately converged after more than 100 iterative train-
ing．

A ＲBM with 10 visible units representing the
nine map patterns and 37 hidden units was construc-
ted and applied to mineral potential mapping in the
study area． The following parameters were empirically
chosen: ( a) learning rates; ( b) weight cost = 0．
000 2; and ( c) learning moment = 0． 9． The model
is trained on the 8 248 cells for 200 epochs． After the
training，the two mineral potential maps，with respect
to ASCs and ASEs，are obtained ( Fig． 7) ．
4． 8 MLP modeling

A MLP is a feed forward network that maps an
input vector onto an appropriate target vector． It uses
a supervised back propagation training technique． In
mineral potential mapping，a MLP can serve as a soft
binary classifier to separate deposit-bearing and non-
deposit-bearing cells．

A three-layer perceptron network is constructed
for predicting mineral targets in the study area． The
input layer，hidden layer，and output layer have，re-
spectively，9，18，and 1 units． The sigmoidal func-
tion serve as the activation function and values of
0． 000 5 and 0． 9 serve as learning rate and momen-
tum，respectively． The maximum training time was
empirically defined as 200． The mineral potential map
is obtained from the classification scores generated by
the tvained model ( Fig． 8) ．
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Fig． 7 Mineral potential maps of ASCs ( a) and ASEs ( b) at epoch 200

Fig． 8 Mineral potential maps based on MLP classifi-
cation scores at epoch 200

4． 9 Performance assessment
The cumulative gain and lift charts are applied to

assess the effectiveness of the five mineral potential
maps drawn in Sections 4． 5 through 4． 8． The thresh-
old-defining method in Section 3 is used to predefine 1
000 thresholds for each mineral potential map，the
yrate，tprate，and lift with respect to each threshold
are estimated and the cumulative gains and lift charts
are drawn in Fig． 9． The AUC，AUL，SEAUC，and
ZAUC with respect to each mineral potential map are
computed and listed in Table 6．

The cumulative gain curves in Fig． 9a illustrate:
( a) LGＲ performs a little bit better than WofE; ( b)
ASC and ASE perform same well due to the overlap of
the two curves; ( c) MLP performs worst among the
five methods; and ( d) the performance of both ASC
and ASE are unable to be differentiated from that of
LGＲ or WofE due to their crossed cumulative gain
curves．

The cumulative lift charts in Fig． 9b show that:
( a) the cumulative lift charts for LGＲ，ASC，and
ASE have almost same shape and the maximum lift
points locate far away from the origin; ( b) the cumu-
lative lift chart of WofE is similar to that of the above
three methods，but the maximum lift points locate
much nearer to the origin; and ( c) MLP model has a
cumulative lift chart near to the baseline and the max-
imum lift points locate around the origin．

According to the above features of the cumulative
lift charts，we can conclude that: ( a ) LGＲ，ASC，
and ASE perform best; ( b) WofE performs well but a
little bit worse compared to LGＲ，ASC，and ASE;
( c) MLP performs worst among the five methods; and

Table 6 Overall performance measures of 5 mineral potential maps

Model Epoch Ｒesult AUC AUL SEAUC ZAUC

WofE － Posterior probability 0． 802 2 0． 801 3 0． 053 2 5． 681 7
LGＲ 50 Probability 0． 806 6 0． 805 7 0． 052 8 5． 806 1
ＲBM 200 ASC 0． 805 7 0． 804 8 0． 052 9 5． 781 2
ＲBM 200 ASE 0． 805 7 0． 804 8 0． 052 9 5． 781 2
MLP 200 Score 0． 658 0 0． 657 5 0． 059 8 2． 640 6

( d) LGＲ，ASC，and ASE can predict more concen- trated mineral potential areas than WofE．
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Fig． 9 Cumulative gains ( a) and lift charts ( b) with respect to five mineral potential maps

ZAUC is an AUC － dependent statistics satisfying
standard normal distribution，it can be used to test
whether the AUC value is significantly different from
0． 5 with a probability of 95% ． The five ZAUCs in Ta-
ble 6 are more than 1． 96 of the 95% confidence lim-
it，thus the five AUCs are significantly different from
0． 5．

The AUCs and AULs listed in Table 6 reveal
that: ( a) LGＲ performs best with AUC value 0． 806 6
and AUL value 0． 805 7; ( b) ASC and ASE perform
same nearly best with the identical AUC value
0． 805 7 and the identical AUL value 0． 804 8; ( c)
WofE performs well with AUC value 0． 802 2 and AUL
value 0． 801 3; and ( d ) MLP performs worst with
AUC value 0． 658 0 and AUL value 0． 657 5．

Based on the above discussion，performance of
the five methods can be sequenced from the best to
the worst as: LGＲ ＞ ASC = ASE ＞ WofE ＞ MLP．

5 Discussion and conclusion
Cumulative gain and lift charts were introduced

into the field of mineral prediction to evaluate the per-
formance of mineral potential mapping models． A case
study was conducted in the Altay region in northern

Xinjiang in China． The WofE，LGＲ，ＲBM，and MLP
models were applied to the mineral potential mapping
and their performance were measured using their cu-
mulative gain and lift charts． The results show that
cumulative gain and lift charts are a feasible tool for
estimating the effectiveness of mineral potential map-
ping models．

In our case study，the cumulative gain curves
can differentiate the performance of WofE，LGＲ and
MLP as well as the performance of ＲBM and MLP，
but they can’t differentiate the performance of ＲBM
from that of WofE and LGＲ． The cumulative lift
charts can differentiate the performance of ＲBM，
WofE，and MLP and also the performance of LGＲ，
WofE，and MLP，while can’t discriminate the per-
formance of ＲBM and LGＲ． Under those circum-
stances，the overall performance of the five methods
were sequenced from the best to the worst using their
AUC or AUL values．

The percentage of deposit-bearing cells is only
0． 303 1% in the grid cell population in our case
study． These class imbalance data make the values of
AUL and AUC of each model almost identical and also
make the cumulative gains and lift charts become
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polylines due to the situation that the number of de-
posit-bearing cells is far less than the number of
thresholds．

The likelihood ratio is always non-negative． If
the likelihood ratio is more than 1． 0，the map pattern
is positively associated with mineral deposits; and oth-
erwise，the map pattern is negatively associated or un-
associated with mineral deposits． So number 1． 0 can
serve as the fixed threshold value for map pattern se-
lection． In practice，computing likelihood ratio is
much simpler compared to computing the WofE con-
trast．
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