Global Geology    2020 23 (3): 135-148   ISSN: 1673-9736  CN: 22-1371/P  

Controlling factors of sphalerite and galena deposition in Baiyinnuo'er skarn deposit, Inner Mongolia, China
MA Wanli1, YANG He1, WANG Keyong1,2
1. College of Earth Sciences, Jilin University, Changchun 130061, China;
2. Key Laboratory of Mineral Resources Evaluation in Northeast Asia, Ministry of Natural Resources of China, Changchun 130061, China
收稿日期 2019-10-31  修回日期 2019-11-25  网络版发布日期 null
参考文献  Baker T, Achterberg E, Ryan C G,et al. 2004. Composition and evolution of ore fluids in a magmatic-hydrothermal skarn deposit.Geology,32(2):117-120.
Baker T, Lang J R. 2003. Reconciling fluid inclusions, fluid processes and fluid source in skarns:An example from the Bismark skarn deposit, Mexico.Mineralium Deposita,38(4):474-495.
Barnes H L.1979. Geochemistry of hydrothermal ore deposits. New York:Wiley Interscience, 798.
Bertelli M, Baker T, Cleverly J S,et al. 2009. Geochemical modeling of a Zn-Pb skarn:Constraints from LA-ICP-MS analysis of fluid inclusions.Journal of Geochemical Exploration,102(1):13-26.
Bodnar R J. 1993. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions.Geochimica et Cosmochimica Acta,57(3):683-684.
Burnham C W. 1979. Magmas and hydrothermal fluids//Barnes H L. (ed.) Geochemistry of hydrothermal ore deposits:2nd ed. New York:John Wiley and Sons, 71-136.
Chen Y J, Chen H Y, Zaw K,et al. 2007. Geodynamic settings and tectonic model of skarn gold deposits in China:an overview.Ore Geology Reviews,31:139-169.
Hedenquist J W, Arribas A, Reynolds T J. 1998. Evolution of an intrusion centered hydrothermal system:Far Southeast-Lepanto porphyry and epithermal Cu-Au deposit.Econo-mic Geology,93(4):373-404.
Helgeson H C, Kirkham D H, Flowers G C. 1981. Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures:IV. calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal pro-perties to 600℃ and 5 kb.American Journal of Science,281(10):1249-1516.
Hennet R J C, Crerar D A, Schwartz J. 1988. Organic complexes in hydrothermal systems.Economic Geology,83:742-764.
Hezarkhani A, Williams-Jones A E, Gammons C H. 1999. Factors controlling copper solubility and chalcopyrite deposition in the Sungun porphyry copper deposit, Ira.Mine-ralium Deposita,34(8):770-783.
Mao J W, Xie G Q, Zhang Z H,et al. 2005. Mesozoic large-scale metallogenic pluses in North China and correspon-ding geodynamic settings.Acta Petrologica Sinica,21(1):169-188. (in Chinese with English abstract)
Meinert L D, Hefton K K, Mayes D,et al. 1997. Geology, zonation, and fluid evolution of the Big Gossan Cu-Au skarn deposit, Ertsberg district, Irian Jaya.Economic Geo-logy,92(5):509-534.
Meinert L D. 2003. Formation of anhydrous and hydrous skarn in Cu-Au ore deposits by magmatic fluids.Economic Geo-logy,98(1):147-156.
Li J Y. 2006. Permian geodynamic setting of Northeast China and adjacent regions:closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate.Journal of Asian Earth Sciences,26(3):207-224.
Jahn B M. 2004. The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic//Malpas J, Fletcher C J N, Ali J R,et al. (Eds.) Aspects of the tectonic evolution of China. London:Geological Society of London, 73-100.
Jiang S H, Nie F J, Bai D H,et al. 2011. Geochronology evidence for indosinian mineralization in Baiyinnuoer Pb-Zn deposit of Inner Mongolia.Mineral Deposits,30(5):787-798. (in Chinese with English abstract)
Johnson J W, Oelker E H, Helgeson H C. 1992. SUPCRT92:A software package for calculating the standard molal thermo-dynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5 000 bar and 0℃ to 1 000℃.Computers in Geoscience,18:899-947.
Kamenetsky V S, van Achterbergh E, Ryan C G,et al.2002. Extreme chemical heterogeneity of granite-derived hydrothermal fluids:An example from inclusions in a single crystal of miarolitic quartz.Geology,30:459-462.
Kwak T A P, Tan T H. 1981. The importance of CaCl2 in fluid composition trends evidence from the King Island (Dophin) skarn deposit.Economic Geology,76:955-960.
Kulik D A, Wagner T, Dmytrieva S V,et al. 2013. GEM-Selektor geochemical modeling package:revised algorithm and GEMS3K numerical kernel for coupled simulation codes.Computational Geosciences,17(1):1-24.
Ouyang H G, Mao J W, Santosh M,et al. 2014. The Early Cretaceous Weilasituo Zn-Cu-Ag vein deposit in the sou-thern Great Xing'an Range, northeast China:fluid inclusions, H, O, S, Pb isotope geochemistry and genetic implications.Ore Geology Review,56:503-515.
Pettke T, Oberli F, Audétat A,et al.2012. Recent developments in element concentration and isotope ratio analysis of individual fluid inclusions by laser ablation single and multiple collector ICP-MS.Ore Geology Reviews,44:10-38.
Qi J P, Chen Y J, Pirajno F. 2005. Geological characteristics and tectonic setting of the epithermal deposits in the northeast China.Journal of Mineralogy and Petrology,25(2):47-59 (in Chinese with English abstract).
Robinson B W, Ohmoto H. 1973. Mineralogy, fluid inclusions, and stable isotopes of the Echo Bay U-Ni-Cu depo-sit, northwest Territories, Canda.Economic Geology,68(5):635-656.
Samson I M, Williams-Jones A E, Ault K M,et al. 2008. Source of fluids forming distal Zn-Pb-Ag skarns:evidence from laser ablation-inductively coupled plasma-mass spectrometry analysis of fluid inclusions from E1 Mochito, Honduras.Geology,36:947-950.
Shu Q, Chang Z, Hammerli J,et al. 2017. Composition and evolution of fluids forming the Baiyinnuo'er Zn-Pb skarn deposit, northeastern China:insights from laser ablation ICP-MS study of fluid inclusions.Economic Geology,112(6):1441-1460.
Shu Q, Lai Y, Sun Y,et al. 2013. Ore genesis and hydrothermal evolution of the Baiyinnuo er zinc-lead skarn deposit, northeast China:Evidence from isotopes (S, Pb) and fluid inclusions.Economic Geology,108(4):835-860.
Sun M D, Xu Y G, Wilde S A, et al.2015. The Permian Dongfanghong island-arc gabbro of the Wandashan orogen, NE China:implications for paleo-Pacific subduction.Tectonophysics,659:122-136.
Wagner T, Kulik D A, Hingerl F F,et al. 2012. GEM-Selektor geochemical modeling package:TSolMod library and data interface for multicomponent phase models.Canadian Mineralogist,50(5):1173-1195.
Wang F, Zhou X H, Zhang L C,et al. 2006. Late Mesozoic volcanism in the Great Xing'an Range (NE China):ti-ming and implications for the dynamic setting of NE Asia.Earth and Planetary Science Letters,251(1/2):179-198.
Wilde S A. 2015. Final amalgamation of the Central Asian Orogenic Belt in NE China:Paleo-Asian Ocean closure versus Paleo-Pacific plate subduction-a review of the evidence.Tectonophysics,662:345-362.
Wilde S A, Zhou J B. 2015. The Late Paleozoic to Mesozoic evolution of the eastern margin of the Central Asian Orogenic Belt in China.Journal of Asian Earth Sciences,113:909-921.
Williams-Jones A E, Samson I M, Ault K M, et al.2010. The genesis of distal zinc skarns:evidence from the Mochito deposit, Honduras.Economic Geology,105(8):1411-1440.
Wu F Y, Lin J Q, Wilde S A,et al. 2005. Nature and significance of the early cretaceous giant igneous event in eastern China.Earth and Planetary Science Letters,233(1/2):103-119.
Wu F Y, Sun D Y, Li H M,et al. 2002. A-type granites in Northeastern China:age and geochemical constraints on their petrogenesis.Chemical Geology,187(1/2):143-173.
Wu F Y, Sun D Y, Ge W C,et al. 2011. Geochronology of the Phanerozoic granitoids in northeastern China.Journal of Asian Earth Sciences,41(1):1-30.
Xiao W J, Zhang L C, Qin K Z,et al. 2004. Paleozoic accretionary and collisional tectonics of the eastern Tianshan China:implication for the continental growth of central Asia.American Journal of Science,304:370-395.
Yang J H, Wu F Y, Wilde S A,et al. 2008. Petrogenesis and geodynamics of Late Archean magmatism in the eastern North China Craton:geochronological, geochemical and Nd Hf isotopic evidence.Precambrian Research,167(1/2):125-149.
Yu Q, Wang K Y, Han Y,et al. 2015. Metallogenic fluid characteristics of Baiyinnuo'er Pb-Zn deposit of Inner Mongolia.Global Geology,34(1):102-112. (in Chinese with English abstract)
Zhai D G, Liu J J, Tombros S,et al. 2018a. The genesis of the Hashitu porphyry molybdenum deposit, Inner Mongolia, NE China:constraints from mineralogical, fluid inclusion, and multiple isotope (H, O, S, Mo, Pb) stu-dies.Mineralium Deposita,53(3):377-397.
Zhai D G, Liu J J, Cook N J,et al. 2018b. Ag-Pb-Zn minera-lization at Bianjiadayuan, Inner Mongolia, NE China.Mineralium Deposita,54(1):47-66.
Zhai D G, Liu J J, Wang J P,et al. 2013.Fluid evolution of the Jiawula Ag-Pb-Zn deposit, Inner Mongolia:mineralo-gical, fluid inclusion, and stable isotopic evidence.International Geology Review,55(2):204-224.
Zhai D G, Liu J J, Zhang H Y,et al. 2014. S-Pb isotopic geochemistry, U-Pb and Re-Os geochronology of the Huanggangliang Fe-Sn deposit, Inner Mongolia, NE China.Ore Geology Review,59:109-122.
Zhang D Q, Lei Y F, Luo T Y,et al. 1991. Geological characteristics and metallogeny of the Baiyinnuo er lead-zinc deposit, Inner Mongolia.Mineral Deposits,10:304-316. (in Chinese with English abstract).
Zhao Y M, Zhang D Q. 1997. Metallogeny and prospective evaluation of copper-polymetallic deposits in the Da Hinggan Mountains and its adjacent regions. Beijing:Seismological Press, 83-106. (in Chinese with English abstract)

通讯作者: WANG Keyong