Global Geology    2017 20 (4): 229-236   ISSN: 1673-9736  CN: 22-1371/P  

Application of sedimentary pyrite in paleo-environment:a case study of Meihe Formation
LIU Hang1, ZHU Jianwei1,2, CHEN Jingwu1
1. College of Earth Sciences, Jilin University, Changchun 130061, China;
2. Key Laboratory of Oilshale and Coexistent Energy Minerals of Jilin Province, Jilin University, Changchun 130061, China
收稿日期 2017-02-07  修回日期 2017-03-28  网络版发布日期 null
参考文献  Arthur M A, Sageman B B. 1994. Marine shales:depositional mechanisms and environments of ancient deposits. Annual Review of Earth and Planetary Sciences,22:499-551.
Bai Y, Liu Z, Sun P,et al. 2015. Rare earth and major element geochemistry of Eocene fine-grained sediments in oil shale-and coal-bearing layers of the Meihe Basin, Northeast China.Journal of Asian Earth Sciences,97(Part A):89-101.
Bai Y Y, Liu Z J, Sun P C,et al. 2014. Organic matter accumulation pattern of coal bearing layers in the lower part of Meihe Formtion in Paleogene, Meihe Basin.Meitan Xuebao/Journal of the China Coal Society,39:458-464. (in Chinese with English abstract)
Berner R A. 1970. Sedimentary pyrite formation.American Journal of Science,268:1-23.
Berner R A. 1972. Sulfate reduction, pyrite formation, and the oceanic sulfur budget//Dyrssen D,Jagner D.(eds.) The Changing chemistry of the oceans. New York:Wiley-Interscience, 347-361..
Berner R A. 1984. Sedimentary pyrite formation:an update.Geochimica et Cosmochimica Acta, 48:605-615.
Berner R A, Raiswell R. 1983. Burial of organic carbon and pyrite sulfur in sediments over phanerozoic time:a new theory.Geochimica et Cosmochimica Acta,47:855-862.
Berner R A, Raiswell R. 1984. C/S method for distinguishing freshwater from marine sedimentary rocks.Geology,12:365-368.
Boesen C, Postma D. 1988. Pyrite formation in anoxic environments of the Baltic.American Journal of Science,288:575-603.
Canfield D E, Teske A. 1996. Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies.Nature,382:127-132.
Dean W E, Arthur M A. 1989. Iron-sulfur-carbon relationships in organic-carbon-rich sequences I:Cretaceous western interior seaway.American Journal of Science, 289:708-743.
Deditius A P, Utsunomiya S, Reich M,et al. 2011. Trace metal nanoparticles in pyrite.Ore Geology Reviews,42:32-46.
Goldberg T, Strauss H, Guo Q,et al. 2007. Reconstructing marine redox conditions for the Early Cambrian Yangtze Platform:evidence from biogenic sulphur and organic carbon isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology,254:175-193.
Habicht K S, Canfield D E. 1997. Sulfur isotope fractionation during bacterial sulfate reduction in organic-rich sediments.Geochimica et Cosmochimica Acta,61:5351-5361.
Leventhal J S. 1995. Carbon-sulfur plots to show diagenetic and epigenetic sulfidation in sediments.Geochimica et Cosmochimica Acta,59:1207-1211.
Luther G W, Church T M, Powell D. 1991. Sulfur speciation and sulfide oxidation in the water column of the Black Sea.Deep Sea Research Part A Oceanographic Research Papers,38:S1121-S1137.
Lyons T W, Berner R A, Berner R A. 1992. Carbon-sulfur-iron systematics of the uppermost deep-water sediments of the Black Sea.Chemical Geology,99:1-27.
Morse J W, Berner R A. 1995. What determines sedimentary C/S ratios? Geochimica et Cosmochimica Acta,59:1073-1077.
Raiswell R. 1982. Pyrite texture, isotopic composition and the availability of iron.American Journal of Science,282:1244-1263.
Raiswell R, Buckley F, Berner R A,et al. 1988. Degree of pyritization of iron as a paleoenvironmental indicator of bottom-water oxygenation.Journal of Sedimentary Research,58:812-819.
Raiswell R, Canfield D, Berner R. 1994. A comparison of iron extraction methods for the determination of degree of pyritisation and the recognition of iron-limited pyrite formation. Chemical Geology,111:101-110.
Raiswell R, Canfield D E. 1998. Sources of iron for pyrite formation in marine sediments.American Journal of Science,298:219-245.
Raiswell R, Newton R, Wignall P B. 2001. An indicator of water-column anoxia:resolution of biofacies variations in the Kimmeridge clay (Upper Jurassic, U.K.).Journal of Sedimentary Research,71:286-294.
Schieber J. 2002. Sedimentary pyrite:a window into the microbial past. Geology,30:531-534.
Suits N S, Wilkin R T. 1998. Pyrite formation in the water column and sediments of a meromictic lake.Geology,26:1099-1102.
Tuttle M L, Goldhaber M B. 1993. Sedimentary sulfur geochemistry of the Paleogene Green River Formation, western USA:implications for interpreting depositional and diagenetic processes in saline alkaline lakes. Geochimica et Cosmochimica Acta,57:3023-3039.
Wignall P, Newton R. 1998. Pyrite framboid diameter as a measure of oxygen deficiency in ancient mudrocks.American Journal of Science,298:537-552.
Wignall P B. 1994. Black Shales. Oxford:Clarendon Press, 127.
Wilkin R T, Arthur M A, Dean W E. 1997. History of water-column anoxia in the Black Sea indicated by pyrite framboid size distributions.Earth and Planetary Science Letters,148:517-525.
Xiong Z, Li T, Algeo T,et al. 2012. Paleoproductivity and paleoredox conditions during late Pleistocene accumulation of laminated diatom mats in the tropical West Pacific.Chemical Geology,334:77-91.
Xu Y B, Liu R, Liu Q J,et al. 2013. Deposition evolution and enrichment pattern of organic matter of the Meihe Formation in the Paleogene Meihe Basin.Journal of China Coal Society,38:2007-2016. (in Chinese with English abstract)
Zaback D A, Pratt L M. 1992. Isotopic composition and speciation of sulfur in the Miocene Monterey Formation:reevaluation of sulfur reactions during early diagenesis in marine environments.Geochimica et Cosmochimica Acta,56:763-774.

通讯作者: ZHU Jianwei