[an error occurred while processing this directive] Global Geology 2020, 23(4) 241-246 DOI:   10.3969/j.issn.1673-9736.2020.04.05  ISSN: 1673-9736 CN: 22-1371/P

本期目录 | 下期目录 | 过刊浏览 | 高级检索                                                            [打印本页]   [关闭]
论文
扩展功能
本文信息
Supporting info
PDF(552KB)
[HTML全文]
参考文献[PDF]
参考文献
服务与反馈
把本文推荐给朋友
加入我的书架
加入引用管理器
引用本文
Email Alert
文章反馈
浏览反馈信息
本文关键词相关文章
DDTF dictionary
hard threshold
curvelet transform
random noise
本文作者相关文章
ZHENG Jialiang
WANG Deli
ZHANG Liang
PubMed
Article by Zheng J
Article by Wang D
Article by Zhang L
Seismic data denoising based on data-driven tight frame dictionary learning method
ZHENG Jialiang, WANG Deli, ZHANG Liang
College of Geo-Exploration Science and Technology, Jilin University, Changchun 130026, China
摘要: Because of various complicated factors in seismic data collection, the random noise of seismic data is too difficult to avoid. This random noise reduces the quality of seismic data and increases the difficulty of seismic data processing and interpretation. Improving the denoising technology is significant. In order to improve seismic data denoising result, a novel method named data-driven tight frame (DDTF) is introduced in this paper. First, we get the sparse coefficients of seismic data with noise by DDTF. Then we remove the smaller sparse coefficient by using the hard threshold function. Finally, we get the denoised seismic data by inverse transform. Furthermore, the DDTF is compared with curvelet transform in the stimulation and practical seismic data experiments to validate its performance. DDTF can raise the signal-to-noise ratio of seismic data denoising and protect the effective signal well.
关键词 DDTF dictionary   hard threshold   curvelet transform   random noise  
Seismic data denoising based on data-driven tight frame dictionary learning method
ZHENG Jialiang, WANG Deli, ZHANG Liang
College of Geo-Exploration Science and Technology, Jilin University, Changchun 130026, China
Abstract: Because of various complicated factors in seismic data collection, the random noise of seismic data is too difficult to avoid. This random noise reduces the quality of seismic data and increases the difficulty of seismic data processing and interpretation. Improving the denoising technology is significant. In order to improve seismic data denoising result, a novel method named data-driven tight frame (DDTF) is introduced in this paper. First, we get the sparse coefficients of seismic data with noise by DDTF. Then we remove the smaller sparse coefficient by using the hard threshold function. Finally, we get the denoised seismic data by inverse transform. Furthermore, the DDTF is compared with curvelet transform in the stimulation and practical seismic data experiments to validate its performance. DDTF can raise the signal-to-noise ratio of seismic data denoising and protect the effective signal well.
Keywords: DDTF dictionary   hard threshold   curvelet transform   random noise  
收稿日期 2020-02-19 修回日期 2020-03-29 网络版发布日期  
DOI: 10.3969/j.issn.1673-9736.2020.04.05
基金项目:

通讯作者: WANG Deli
作者简介:
作者Email: 1070021872@qq.com

参考文献:
Aharon M, Elad M, Bruckstein A. 2006. K-SVD:an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 54(11):4311.
Cai J F, Ji H, Shen Z, et al. 2014. Data-driven tight frame construction and image denoising. Applied and Computational Harmonic Analysis, 37(1):89-105.
Cao J, Shao A. 2017. Adaptive seismic random noise attenuation using curvelet transform//79th EAGE Conference and Exhibition 2017.
Cheng S J, Han L G, Yu J L, et al. 2018.Seismic data denoising based on improved K-SVD dictionary learning method. Global Geology, 37(2):627-635. (in Chinese with English abstract)
Chen Y K, Ma J W, Fomel S. 2016. Double-sparsity dictionary for seismic noise attenuation. Geophysics, 81(2):103-116.
Elad M, Aharon M. 2006. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Transactions on Signal Processing, 15(12):3736-3745.
Herrmann F J, Hennenfent G. 2008. Non-parametric seismic data recovery with curvelet frames. Geophysical Journal International, 173(1):233-248.
Jiang Y D, Yang Q Y, He K, et al. 2012. Study on denoising method of surface micro seismic data based on curved wave transformation. Geophysical Prospecting for Petroleum, 51(6):620-624, 537. (in Chinese)
Nazari Siahsar M A, Gholtashi S, Kahoo A R, et al. 2017.Data-driven multitask sparse dictionary learning for noise attenuation of 3D seismic data. Geophysics, 82(6):V385-V396.
Schönemann P. 1966. A generalized solution of the orthogonal procrustes problem. Psychometrika, 31(1):1-10.
Shao J, Sun C Y, Tang J, et al. 2016. Wavelet domain sparse representation based on dictionary training for microseismic denoising. Oil Geophysical Prospecting, 51(2):254-260, 204-205. (in Chinese with English abstract)
Tang G, Ma J W, Yang H Z. 2012. Seismic data denoising based on learning-type overcomplete dictionaries. Applied Geophysics, 9(1):27-32, 114-115.
Yu S, Ma J, Zhang X, et al. 2015. Interpolation and denoising of high-dimensional seismic data by learning a tight frame. Geophysics, 80(5):V119-V132.
Yuan Y H, Wang Y B, Liu Y K, et al. 2013. Non quadratic curvelet transform and its application in seismic noise suppression. Chinese Journal of Geophysics, 56(3):1023-1032. (in Chinese with English abstract)
Zhang L. 2018. The research of seismic data interprolation and denoising via sparse representation:master's degree thesis. Changchun:Jilin University. (in Chinese with English abstract)
Zhang J H, Lu N, Tian L Y, et al. 2005. A comprehensive review of seismic data denoising methods. Oil Geophysical Prospecting, 40(Suppl. 1):121-127. (in Chinese with English abstract)
Zhu L, Liu E, McClellan J H. 2015.Seismic data denoising through multiscale and sparsity-promoting dictionary learning. Geophysics, 80(6):45-57.
Zou H, Hastie T, Tibshirani R. 2006. Sparse principal component analysis. Journal of Computational and Graphical Statistics, 15(2):265-286.
本刊中的类似文章

Copyright by Global Geology