[an error occurred while processing this directive] | Global Geology 2019, 22(3) 179-187 DOI: 10.3969/j.issn.1673-9736.2019.03.05 ISSN: 1673-9736 CN: 22-1371/P | ||||||||||||||||||||||||||||||||||||||||||||
����Ŀ¼ | ����Ŀ¼ | ������� | ������ [��ӡ��ҳ] [�ر�] | |||||||||||||||||||||||||||||||||||||||||||||
���� |
| ||||||||||||||||||||||||||||||||||||||||||||
Regularized focusing inversion for large-scale gravity data based on GPU parallel computing | |||||||||||||||||||||||||||||||||||||||||||||
WANG Haoran1, DING Yidan1, LI Feida2, LI Jing1 | |||||||||||||||||||||||||||||||||||||||||||||
1. College of Geo-Exploration Science and Technology, Jilin University, Changchun 130026, China; 2. Jilin Geophysics Prospecting Institude, Changchun 130062, China | |||||||||||||||||||||||||||||||||||||||||||||
ժҪ�� Processing large-scale 3-D gravity data is an important topic in geophysics field. Many existing inversion methods lack the competence of processing massive data and practical application capacity. This study proposes the application of GPU parallel processing technology to the focusing inversion method, aiming at improving the inversion accuracy while speeding up calculation and reducing the memory consumption, thus obtaining the fast and reliable inversion results for large complex model. In this paper, equivalent storage of geometric trellis is used to calculate the sensitivity matrix, and the inversion is based on GPU parallel computing technology. The parallel computing program that is optimized by reducing data transfer, access restrictions and instruction restrictions as well as latency hiding greatly reduces the memory usage, speeds up the calculation, and makes the fast inversion of large models possible. By comparing and analyzing the computing speed of traditional single thread CPU method and CUDA-based GPU parallel technology, the excellent acceleration performance of GPU parallel computing is verified, which provides ideas for practical application of some theoretical inversion methods restricted by computing speed and computer memory. The model test verifies that the focusing inversion method can overcome the problem of severe skin effect and ambiguity of geological body boundary. Moreover, the increase of the model cells and inversion data can more clearly depict the boundary position of the abnormal body and delineate its specific shape. | |||||||||||||||||||||||||||||||||||||||||||||
�ؼ����� large-scale gravity data GPU parallel computing CUDA equivalent geometric trellis focusing inversion | |||||||||||||||||||||||||||||||||||||||||||||
Regularized focusing inversion for large-scale gravity data based on GPU parallel computing | |||||||||||||||||||||||||||||||||||||||||||||
WANG Haoran1, DING Yidan1, LI Feida2, LI Jing1 | |||||||||||||||||||||||||||||||||||||||||||||
1. College of Geo-Exploration Science and Technology, Jilin University, Changchun 130026, China; 2. Jilin Geophysics Prospecting Institude, Changchun 130062, China | |||||||||||||||||||||||||||||||||||||||||||||
Abstract: Processing large-scale 3-D gravity data is an important topic in geophysics field. Many existing inversion methods lack the competence of processing massive data and practical application capacity. This study proposes the application of GPU parallel processing technology to the focusing inversion method, aiming at improving the inversion accuracy while speeding up calculation and reducing the memory consumption, thus obtaining the fast and reliable inversion results for large complex model. In this paper, equivalent storage of geometric trellis is used to calculate the sensitivity matrix, and the inversion is based on GPU parallel computing technology. The parallel computing program that is optimized by reducing data transfer, access restrictions and instruction restrictions as well as latency hiding greatly reduces the memory usage, speeds up the calculation, and makes the fast inversion of large models possible. By comparing and analyzing the computing speed of traditional single thread CPU method and CUDA-based GPU parallel technology, the excellent acceleration performance of GPU parallel computing is verified, which provides ideas for practical application of some theoretical inversion methods restricted by computing speed and computer memory. The model test verifies that the focusing inversion method can overcome the problem of severe skin effect and ambiguity of geological body boundary. Moreover, the increase of the model cells and inversion data can more clearly depict the boundary position of the abnormal body and delineate its specific shape. | |||||||||||||||||||||||||||||||||||||||||||||
Keywords: large-scale gravity data GPU parallel computing CUDA equivalent geometric trellis focusing inversion | |||||||||||||||||||||||||||||||||||||||||||||
�ո����� 2019-06-03 ������ 2019-07-02 ����淢������ | |||||||||||||||||||||||||||||||||||||||||||||
DOI: 10.3969/j.issn.1673-9736.2019.03.05 | |||||||||||||||||||||||||||||||||||||||||||||
������Ŀ:
Supported by Project of National Natural Science Foundation (No.41874134) | |||||||||||||||||||||||||||||||||||||||||||||
ͨѶ����: WANG Haoran | |||||||||||||||||||||||||||||||||||||||||||||
�����: | |||||||||||||||||||||||||||||||||||||||||||||
����Email: 412012558@qq.com | |||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||
�ο����ף� | |||||||||||||||||||||||||||||||||||||||||||||
Chen Z X,Meng X H,Guo L H,et al. 2012. Three-dimensional fast forward modeling and the inversion strategy for large scale gravity and gravimetry data based on GPU.Chinese Journal of Geophysics,55(12):4069-4077. (in Chinese with English abstract) Hou Z L. 2016. Research and application of the parallel inversion algorithms based on the full tensor gravity gradiometry data:doctor's degree thesis. Changchun:Jilin University.(in Chinese with English abstract) Jacobs D A. 1986. A generalization of the conjugate-gradient method to solve complex systems. IMA Journal of Numerical Analysis,6(4):447-452. Last B J, Kubik K. 2012. Compact gravity inversion.Geophysics,48(6):713-721. LI W Y,Zhang J,Lin W. 2016. Regularized inversion of 3D gravity data:a new GPU parallelized method based on CUDA.Geophysical and Geochemical Exploration,40(1):179-184.(in Chinese with English abstract) Li Y, Oldenburg D W. 2003. Fast inversion of large-scale magnetic data using wavelet transforms and logarithmic barrier method.Geophysical Journal International,152(2):251-265. ?uma M, Zhdanov M S. 2014. Massively parallel regularized 3D inversion of potential fields on CPUs and GPUs. Computers & Geosciences,62:80-87. Moorkamp M, Jegen M, Roberts A,et al. 2010. Massively parallel forward modeling of scalar and tensor gravimetry data.Computers & Geosciences,36(5):680-686. Portniaguine O, Zhdanov M S. 2012. Focusing geophysical inversion images.Geophysics,64(3):874-887. Tikhonov B N, Arsenin V Y. 1977. Solutions of ill-posed problems.SIAM Review,178(2):258. Yao C L,Hao T Y,Guan Z N,et al. 2003. High-speed computation and efficient storage in 3-D gravity and magnetic inversion based on genetic algorithms.Chinese Journal of Geophysics,46(2):252-258.(in Chinese with English abstract) Yu L, Zhang J, Lin W,et al. 2017. Three-dimensional genetic gravity inversion by GPU parallel:a case study of Xisha trough basin.Progress in Geophysics,32(5):385-392.(in Chinese with English abstract) Zeng Y C. 2016. Research on 3D inversion of gravity acceleration in CUDA parallel architecture:master's degree thesis. Chengdu:Chengdu University of Technology.(in Chinese with English abstract) |
|||||||||||||||||||||||||||||||||||||||||||||
������������� | |||||||||||||||||||||||||||||||||||||||||||||
1��WANG Xusheng, ZENG Zhaofa.3D fast inversion of gravity data based on GPU[J]. Global Geology, 2018,21(2): 114-119 | |||||||||||||||||||||||||||||||||||||||||||||
Copyright by Global Geology |