[an error occurred while processing this directive] | Global Geology 2018, 21(2) 114-119 DOI: 10.3969/j.issn.1673-9736.2018.02.04 ISSN: 1673-9736 CN: 22-1371/P | ||||||||||||||||||||||||||||||||||||||||||||||||||
����Ŀ¼ | ����Ŀ¼ | ������� | ������ [��ӡ��ҳ] [�ر�] | |||||||||||||||||||||||||||||||||||||||||||||||||||
���� |
| ||||||||||||||||||||||||||||||||||||||||||||||||||
3D fast inversion of gravity data based on GPU | |||||||||||||||||||||||||||||||||||||||||||||||||||
WANG Xusheng, ZENG Zhaofa | |||||||||||||||||||||||||||||||||||||||||||||||||||
College of Geo-Exploration Science and Technology, Changchun 130026, China | |||||||||||||||||||||||||||||||||||||||||||||||||||
ժҪ�� Large-scale gravity 3D interpretation depends on efficient and high-resolution 3D inversion processing of massive data.The authors applied the conjugate gradient method with minimum support function and prior model constraint to reduce multi-solutions in gravity inversion.Based on the parallel programming and computing platform NVIDIA CUDA with C++language,we achieve fast 3D gravity inversion by adopting GPU parallel technique into the most time consuming part relating to sensitivity matrix.The results of theoretical model show that the abnormal body can be clearly located and the inversion speed is improved greatly.Comparing with inversion speed of the Matlab program,speed of inversion with GPU parallel technique has improved more than 100 times under the hardware condition of Geforce GTX 1060 graphics card. | |||||||||||||||||||||||||||||||||||||||||||||||||||
�ؼ����� GPU CUDA gravity inversion conjugate gradient method | |||||||||||||||||||||||||||||||||||||||||||||||||||
3D fast inversion of gravity data based on GPU | |||||||||||||||||||||||||||||||||||||||||||||||||||
WANG Xusheng, ZENG Zhaofa | |||||||||||||||||||||||||||||||||||||||||||||||||||
College of Geo-Exploration Science and Technology, Changchun 130026, China | |||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract: Large-scale gravity 3D interpretation depends on efficient and high-resolution 3D inversion processing of massive data.The authors applied the conjugate gradient method with minimum support function and prior model constraint to reduce multi-solutions in gravity inversion.Based on the parallel programming and computing platform NVIDIA CUDA with C++language,we achieve fast 3D gravity inversion by adopting GPU parallel technique into the most time consuming part relating to sensitivity matrix.The results of theoretical model show that the abnormal body can be clearly located and the inversion speed is improved greatly.Comparing with inversion speed of the Matlab program,speed of inversion with GPU parallel technique has improved more than 100 times under the hardware condition of Geforce GTX 1060 graphics card. | |||||||||||||||||||||||||||||||||||||||||||||||||||
Keywords: GPU CUDA gravity inversion conjugate gradient method | |||||||||||||||||||||||||||||||||||||||||||||||||||
�ո����� 2017-12-05 ������ 2018-01-14 ����淢������ | |||||||||||||||||||||||||||||||||||||||||||||||||||
DOI: 10.3969/j.issn.1673-9736.2018.02.04 | |||||||||||||||||||||||||||||||||||||||||||||||||||
������Ŀ:
Supported by Project of Geophysical Comprehensive Survey and Information Extraction of Deep Mineral Resources (No.2016YFC0600505). | |||||||||||||||||||||||||||||||||||||||||||||||||||
ͨѶ����: | |||||||||||||||||||||||||||||||||||||||||||||||||||
�����: | |||||||||||||||||||||||||||||||||||||||||||||||||||
����Email: | |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
�ο����ף� | |||||||||||||||||||||||||||||||||||||||||||||||||||
Chen H G, Wu J S, Wang J L. 2002. Research in modified simulated annealing gravity inversion.Journal of Jilin University (Earth Science Edition),32(3):294-298. (in Chinese with English abstract) Chen S H, Zhu Z Q, Lu G Y,et al. 2013. Inversion of gravity gradient tensor based on preconditioned conjugate gradient.Journal of Central South University:Science and Technology,44(2):619-625. (in Chinese with English abstract) Chen Y, Li T L, Fan C S,et al. 2014. The 3D focusing inversion of full tensor gravity gradient data based on conjugate gradient.Progress in Geophysics,29(3):1133-1142. (in Chinese with English abstract) Chen Z X, Meng X H, Guo L H,et al. 2012. 3D fast forward modeling and the inversion strategy for large scale gravity and gravimetry data based on GPU.Chinese Journal of Geophysics,55(12):4069-4077. (in Chinese with English abstract) Feng X L, Wang W Y, Liu F Q,et al. 2014. 2D gravity inversion of basement relief of rift basin based on a dual interface model.Chinese Journal of Geophysics,57(6):1934-1945. (in Chinese with English abstract) Geng M X, Huang D N, Yang Q,et al. 2014. 3D inversion of airborne gravity-gradiometry data using cokriging.Geophysics,79(4):G37-G47. Geng M X, Huang D N, Yu P,et al. 2016. 3D constrained inversion of full tensor gradiometer data based on cokriging method.Chinese Journal of Geophysics,59(5):1849-1860. (in Chinese with English abstract) Geng M X, Yang Q J. 2013. 2D density inversion with the RBF neural network method.Oil Geophysical Prospecting,48(4):651-657. (in Chinese with English abstract) Guillen A, Menichetti V. 1984. Gravity and magnetic inversion with minimization of a specific functional.Geophysics,49(8):1354-1360. Guo Z H, Guan Z N, Xiong S Q. 2004. Cuboid ΔT andits gradient forward theoretical expressions without analytic odd points.Chinese Journal of Geophysics,47(6):1131-1138. (in Chinese with English abstract) Hou Z L, Wei X H, Huang D N,et al. 2015. Full tensor gravity gradiometry data inversion:Performance analysis of parallel computing algorithms.Applied Geophysics,12(3):292-302. Last B J, Kubik K.1983. Compact gravity inversion.Geophysics,48(6):713-721. Li Y, Oldenburg D W. 1998. 3-D inversion of gravity data.Geophysics,63(1):109-119. Liu Y F, Shen X H. 1997. Nonlinear inversion of gravity anomalies caused by 2D surface of geologic structures genetic algorithms.Computing Techniques for Geophysical and Geochemical Exploration,19(2):138-142. (in Chinese with English abstract) Liu Y, Lv Q T, Li X B,et al. 2015. 3D gravity inversion based on Bayesian method with model order reduction.Chinese Journal of Geophysics,58(12):4727-4739. (in Chinese with English abstract) Nabighian M N, Ander M E, Grauch V J S,et al. 2005. Historical development of the gravity method in exploration.Geophysics,70(6):63-89. Portniaguine O, Zhdanov M S. 1999. Focusing geophysical inversion images.Geophysics,64(3):874-887. Silva J B C, Medeiros W E, Barbosa V C F. 2001. Potential-field inversion:Choosing the appropriate technique to solve a geologic problem.Geophysics,66(2):511-520. Yao C L, Hao T Y, Guan Z N,et al. 2003. High-speed computation and efficient storage in 3D gravity and magnetic inversion based on genetic algorithms.Chinese Journal of Geophysics,46(2):252-258. (in Chinese with English abstract) Zhdanov M S. 2009. New advances in regularized inversion of gravity and electromagnetic data.Geophysical Prospecting,57(4):463-478. |
|||||||||||||||||||||||||||||||||||||||||||||||||||
������������� | |||||||||||||||||||||||||||||||||||||||||||||||||||
1��YUAN Zhiyi, ZENG Zhaofa, JIANG Dandan, HUAI Nan, ZHOU Fei.Multi-component joint inversion of gravity gradient based on fast forward calculation[J]. Global Geology, 2017,20(3): 176-183 | |||||||||||||||||||||||||||||||||||||||||||||||||||
Copyright by Global Geology |