[an error occurred while processing this directive] Global Geology 2016, 19(1) 55-60 DOI:     ISSN: 1673-9736 CN: 22-1371/P

本期目录 | 下期目录 | 过刊浏览 | 高级检索                                                            [打印本页]   [关闭]
论文
扩展功能
本文信息
Supporting info
PDF(735KB)
[HTML全文]
参考文献[PDF]
参考文献
服务与反馈
把本文推荐给朋友
加入我的书架
加入引用管理器
引用本文
Email Alert
文章反馈
浏览反馈信息
本文关键词相关文章
 
本文作者相关文章
XU Dexin
HAN Liguo
LIU Dongyu and WEI Yajie
PubMed
Article by Xu D
Article by Han L
Article by Liu DAWY
 
 
 
摘要:  
关键词    
Random seismic noise attenuation by learning- type overcomplete dictionary based on K- singular value decomposition algorithm
XU Dexin, HAN Liguo, LIU Dongyu and WEI Yajie
College of Geo- Exploration Science and Technology,Jilin University,Changchun 130026,China
Abstract:

The transformation of basic functions is one of the most commonly used techniques for seismic denois- ing,which employs sparse representation of seismic data in the transform domain. The choice of transform base functions has an influence on denoising results. We propose a learning- type overcomplete dictionary based on the K- singular value decomposition (K- SVD) algorithm. To construct the dictionary and use it for random seis- mic noise attenuation,we replace fixed transform base functions with an overcomplete redundancy function library. Owing to the adaptability to data characteristics,the learning- type dictionary describes essential data characteristics much better than conventional denoising methods. The sparsest representation of signals is ob- tained by the learning and training of seismic data. By comparing the same seismic data obtained using the learning- type overcomplete dictionary based on K- SVD and the data obtained using other denoising methods, we find that the learning- type overcomplete dictionary based on the K- SVD algorithm represents the seismic data more sparsely,effectively suppressing the random noise and improving the signal- to- noise ratio.

Keywords: sparse representation   seismic denoising   signal- to- noise ratio   K- singular value decomposition   learning- type overcomplete dictionary.  
收稿日期  修回日期  网络版发布日期  
DOI:
基金项目:

 

通讯作者:
作者简介:
作者Email:

参考文献:
 
本刊中的类似文章
1.. [J]. Global Geology, 2024,27(4): 207-215
2.. [J]. Global Geology, 2024,27(4): 177-195
3.. [J]. Global Geology, 2024,27(4): 196-206
4.. [J]. Global Geology, 2024,27(4): 216-232
5.. [J]. Global Geology, 2024,27(3): 145-153
6.. [J]. Global Geology, 2024,27(3): 154-166
7.. [J]. Global Geology, 2024,27(3): 167-176
8.. [J]. Global Geology, 2024,27(3): 121-131
9.. [J]. Global Geology, 2024,27(3): 132-144
10.. [J]. Global Geology, 2024,27(2): 63-75
11.. [J]. Global Geology, 2024,27(2): 105-120
12.. [J]. Global Geology, 2024,27(2): 93-104
13.. [J]. Global Geology, 2024,27(2): 76-92
14.. [J]. Global Geology, 2024,27(1): 35-42
15.. [J]. Global Geology, 2024,27(1): 56-62

Copyright by Global Geology