[an error occurred while processing this directive] Global Geology 2016, 19(1) 33-40 DOI:     ISSN: 1673-9736 CN: 22-1371/P

本期目录 | 下期目录 | 过刊浏览 | 高级检索                                                            [打印本页]   [关闭]
论文
扩展功能
本文信息
Supporting info
PDF(718KB)
[HTML全文]
参考文献[PDF]
参考文献
服务与反馈
把本文推荐给朋友
加入我的书架
加入引用管理器
引用本文
Email Alert
文章反馈
浏览反馈信息
本文关键词相关文章
 
本文作者相关文章
ZHANG Dailei and ZHANG Chong
PubMed
Article by Zhang DAZC
 
 
 
摘要:  
关键词    
Inversion of 3D density interface with PSO- BP method
ZHANG Dailei and ZHANG Chong
College of Geo- Exploration Science and Technology,Jilin University,Changchun 130026,China
Abstract:

BP (Back Propagation) neural network and PSO (Particle Swarm Optimization) are two main heu- ristic optimization methods, and are usually used as nonlinear inversion methods in geophysics. The authors ap- plied BP neural network and BP neural network optimized with PSO into the inversion of 3D density interface re- spectively,and a comparison was drawn to demonstrate the inversion results. To start with,a synthetic density interface model was created and we used the proceeding inversion methods to test their effectiveness. And then two methods were applied into the inversion of the depth of Moho interface. According to the results,it is clear to find that the application effect of PSO- BP is better than that of BP network. The BP network structures used in both synthetic and field data are consistent in order to obtain preferable inversion results. The applications in synthetic and field tests demonstrate that PSO- BP is a fast and effective method in the inversion of 3D density interface and the optimization effect is evident compared with BP neural network merely,and thus,this method has practical value.

Keywords: inversion   3D density interface   Moho interface   BP neural network   particle swarm optimization  
收稿日期  修回日期  网络版发布日期  
DOI:
基金项目:

 

通讯作者:
作者简介:
作者Email:

参考文献:
 
本刊中的类似文章
1.. [J]. Global Geology, 2024,27(4): 207-215
2.. [J]. Global Geology, 2024,27(4): 177-195
3.. [J]. Global Geology, 2024,27(4): 196-206
4.. [J]. Global Geology, 2024,27(4): 216-232
5.. [J]. Global Geology, 2024,27(3): 145-153
6.. [J]. Global Geology, 2024,27(3): 154-166
7.. [J]. Global Geology, 2024,27(3): 121-131
8.. [J]. Global Geology, 2024,27(3): 132-144
9.. [J]. Global Geology, 2024,27(3): 167-176
10.. [J]. Global Geology, 2024,27(2): 105-120
11.. [J]. Global Geology, 2024,27(2): 76-92
12.. [J]. Global Geology, 2024,27(2): 93-104
13.. [J]. Global Geology, 2024,27(2): 63-75
14.. [J]. Global Geology, 2024,27(1): 56-62
15.. [J]. Global Geology, 2024,27(1): 43-55

Copyright by Global Geology