[an error occurred while processing this directive] Global Geology 2016, 19(1) 6-12 DOI:     ISSN: 1673-9736 CN: 22-1371/P

本期目录 | 下期目录 | 过刊浏览 | 高级检索                                                            [打印本页]   [关闭]
论文
扩展功能
本文信息
Supporting info
PDF(530KB)
[HTML全文]
参考文献[PDF]
参考文献
服务与反馈
把本文推荐给朋友
加入我的书架
加入引用管理器
引用本文
Email Alert
文章反馈
浏览反馈信息
本文关键词相关文章
 
本文作者相关文章
HOU Qiang
ZHU Jianwei and LIN Bo
PubMed
Article by Hou Q
Article by Zhu JALB
 
 
 
摘要:  
关键词    
Estimation of reservoir porosity using probabilistic neural network and seismic attributes
HOU Qiang, ZHU Jianwei and LIN Bo
College of Earth Sciences,Jilin University,Changchun 13006,China
Abstract:

Porosity is one of the most important properties of oil and gas reservoirs. The porosity data that come from well log are only available at well points. It is necessary to use other method to estimate reservoir porosity. Seismic data contain abundant lithological information. Because there are inherent correlations between reservoir property and seismic data,it is possible to estimate reservoir porosity by using seismic data and attributes. Probabilistic neural network is a powerful tool to extract mathematical relation between two data sets. It has been used to extract the mathematical relation between porosity and seismic attributes. Firstly, a seismic imped- ance volume is calculated by seismic inversion. Secondly, several appropriate seismic attributes are extracted by using multi- regression analysis. Then a probabilistic neural network model is trained to obtain a mathematical relation between porosity and seismic attributes. Finally,this trained probabilistic neural network model is im- plemented to calculate a porosity data volume. This methodology could be utilized to find advantageous areas at the early stage of exploration. It is also helpful for the establishment of a reservoir model at the stage of reservoir development.

Keywords: porosity   seismic attributes   probabilistic neural network  
收稿日期  修回日期  网络版发布日期  
DOI:
基金项目:

 

通讯作者:
作者简介:
作者Email:

参考文献:
 
本刊中的类似文章
1.. [J]. Global Geology, 2024,27(4): 177-195
2.. [J]. Global Geology, 2024,27(4): 196-206
3.. [J]. Global Geology, 2024,27(4): 216-232
4.. [J]. Global Geology, 2024,27(4): 207-215
5.. [J]. Global Geology, 2024,27(3): 145-153
6.. [J]. Global Geology, 2024,27(3): 121-131
7.. [J]. Global Geology, 2024,27(3): 132-144
8.. [J]. Global Geology, 2024,27(3): 167-176
9.. [J]. Global Geology, 2024,27(3): 154-166
10.. [J]. Global Geology, 2024,27(2): 63-75
11.. [J]. Global Geology, 2024,27(2): 93-104
12.. [J]. Global Geology, 2024,27(2): 76-92
13.. [J]. Global Geology, 2024,27(2): 105-120
14..[J]. Global Geology, 2024,27(1): 1-19
15.. [J]. Global Geology, 2024,27(1): 20-34

Copyright by Global Geology