[an error occurred while processing this directive] 世界地质 2020, 39(4) 896-904 DOI:   10.3969/j.issn.1004-5589.2020.04.015  ISSN: 1004-5589 CN: 22-1111/P

本期目录 | 下期目录 | 过刊浏览 | 高级检索                                                            [打印本页]   [关闭]
地球物理
扩展功能
本文信息
Supporting info
PDF(2422KB)
[HTML全文]
参考文献[PDF]
参考文献
服务与反馈
把本文推荐给朋友
加入我的书架
加入引用管理器
引用本文
Email Alert
文章反馈
浏览反馈信息
本文关键词相关文章
有限差分
规则网格
离散公式
OpenMP并行算法
计算效率
本文作者相关文章
郑如秋
王波涛
冯永照
余卫江
PubMed
Article by Zheng R
Article by Wang B
Article by Feng Y
Article by Yu W
基于新离散公式和OpenMP优化的有限差分声波数值模拟
郑如秋, 王波涛, 冯永照, 余卫江
中海油田服务股份有限公司 特普公司, 广东 湛江 542051
摘要: 有限差分法算法是声波数值模拟算法中最广泛的数值计算方法。该方法具有计算速度快、占用内存相对较小、易于编程实现及模拟精度高等优点。规则网格下的有限差分算法相比于近年来提出的新的有限差分算法计算效率最高,消耗内存最少。然而,引入PML边界,导致常规网格的有限差分离散公式复杂,计算过程需要对计算区域和边界区域进行判断,导致计算效率低。针对这个问题,笔者新推导的离散公式,形式简单,整个模拟区域计算代码一致,可以很好地解决这个问题。OpenMP并行算法,语言简洁和可移植性高,通过结合OpenMP并行算法,对模拟算法进一步优化,可以较大提高数值模拟的计算效率。
关键词 有限差分   规则网格   离散公式   OpenMP并行算法   计算效率  
Finite difference acoustic numerical simulation based on new discrete formula and OpenMP optimization
ZHENG Ru-qiu, WANG Bo-tao, FENG Yong-zhao, YU Wei-jiang
Data Processing Company, China Oilfield Services Limited-COSL, Zhanjiang 542051, Guangdong, China
Abstract: Finite difference method is the most widely used method in acoustic numerical simulation, which has the advantages of fast computation, relatively small memory consumption, easy programming and high simulation accuracy. Compared with some new improved finite difference algorithms in recent years, finite difference algorithm based on regular grid is the most efficient one with the lowest memory consumption. However, the traditional discrete formula becomes complicated since the introduction of PML boundary. The calculation process needs to distinguish the calculation area from boundary area, which results in low calculation efficiency. To solve this problem, a new discrete formula is derived by the authors, which is simple in form and consistent in the whole simulation area. OpenMP parallel algorithm uses simple language and is with high portability. By combining with OpenMP parallel algorithm and further optimizing the simulation algorithm, the computational efficiency of numerical simulation is greatly improved.
Keywords: finite difference   regular grid   discrete formula   OpenMP parallel program   computational efficiency  
收稿日期 2020-03-27 修回日期 2020-08-28 网络版发布日期  
DOI: 10.3969/j.issn.1004-5589.2020.04.015
基金项目:

国家科技重大专项项目(2016ZX05026-002-004)

通讯作者:
作者简介:
作者Email:

参考文献:
[1] 裴俊勇. 基于新差分结构的时空域有限差分逆时偏移研究:硕士学位论文[D].成都:成都理工大学,2018. PEI Jun-yong. The research of time-space domain finite difference based on new stencil for reverse time migration:master's degree thesis[D]. Chengdu:Chengdu University of Technology, 2018.
[2] 张千祥. 纯P波各向异性介质波场数值模拟及逆时偏移研究:硕士学位论文[D].长春:吉林大学,2016. ZHANG Qian-xiang. Research on numerical simulation for pure P-wave in anisotropic medium and reverse time migration:master's degree thesis[D]. Changchun:Jilin University, 2016.
[3] Claerbout, Jon F. Toward a unified theory of reflector mapping[J]. Geophysics, 1971, 36(3):467-481.
[4] Alford R M, Kelly K R, Boore D M. Accuracy of finite-difference modeling of the acoustic wave equation[J]. Geophysics, 1974, 39(6):834-842.
[5] Madariaga R. Dynamics of an expanding circular fault[J]. Geological Society of America Bulletin, 1976, 66(3):639-666.
[6] Virieux J. SH-wave propagation in heterogeneous media:velocity-stress finite-difference method[J]. Exploration Geophysics, 1984,15(4):265-265.
[7] Dablain M A. The application of high-differencing to the scalar wave equation[J]. Geophysics, 1986, 51(1):54-66.
[8] Clayton R, Engquist B. Absorbing boundary conditions for acoustic and elastic equations[J]. Bulletin of the Seismological Society of America, 1977, 67(6):1529-1540.
[9] Collino F, Tsogka C. Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media[J]. Geophysics, 2001, 66(1):294-307.
[10] Saenger E H, Bohlen T. Finite-difference modeling of viscoelastic and anisotropic wave propagation using the rotated staggered grid[J]. SEG Technical Program Expanded Abstracts, 1999, 21(1):583-591.
[11] 董良国,马在田,曹景忠,等.一阶弹性波方程交错网格高阶差分解法[J].地球物理学报,2000,43(3):411-419. DONG Liang-guo, MA Zai-tian, CAO Jing-zhong, et al. A staggered-grid high-order difference method of one-order elastic wave equation[J].Chinese Journal of Geophysics,2000,43(3):411-419.
[12] 裴正林, 牟永光. 地震波传播数值模拟[J]. 地球物理学进展, 2004,19(4):213-221. PEI Zheng-lin, MOU Yong-guang. Numerical simulation of seismic wave propagation[J]. Progress in Geophysics,2004,19(4):213-221.
[13] Komatitsch D, Tromp J. A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation[J]. Geophysical Journal of the Royal Astronomical Society, 2003, 154(1):146-153.
[14] Wang T, Tang X. Finite-difference modeling of elastic wave propagation:a nonsplitting perfectly matched layer approach[J]. Geophysics, 2003, 68(5):1749-1755.
[15] 赵茂强, 吴国忱.基于高阶有限差分纵横波分解的弹性波数值模拟[J]. 物探化探计算技术,2010,32(5):487-494. ZHAO Mao-qiang, WU Guo-chen. High order finite difference numerical simulation of elastic wave with separated P-waves and S-waves[J].Computing Techniques for Geophysical and Geochemical Exploration, 2010,32(5):487-494.
本刊中的类似文章
1.张志鹏,孙章庆,韩复兴,王雪秋,刘明忱,高正辉.影响高斯束偏移成像质量和效率的主要因素分析[J]. 世界地质, 2022,41(2): 349-364
2.张双全,李桐林. 二维大地电磁主轴各向异性理论模型反演[J]. 世界地质, 2021,40(3): 697-702
3.刘四新,宋梓豪,程建远,蒋必辞. 利用钻孔雷达探测煤矿井下顶底板界面的数值模拟研究[J]. 世界地质, 2021,40(3): 711-720
4.隋竞函, 刘财.基于PML边界下的弹性及黏弹性TTI介质波场模拟[J]. 世界地质, 2018,37(4): 1239-1249
5.王晓冉, 李秋生, 张洪双, 郭陈澔.华南东部地区上地幔P波速度结构研究[J]. 世界地质, 2018,37(2): 620-626
6.宋超, 刘财, 张宇白, 鹿琪.LNAPL 在二维含水介质中运移规律的研究[J]. 世界地质, 2014,33(3): 708-715
7.张东良, 孙建国, 孙章庆,.二维起伏地表直流电场插值法数值模拟[J]. 世界地质, 2009,28(2): 242-248

Copyright by 世界地质