[an error occurred while processing this directive] 世界地质 2019, 38(4) 1073-1081,1090 DOI:   10.3969/j.issn.1004-5589.2019.04.018  ISSN: 1004-5589 CN: 22-1111/P

本期目录 | 下期目录 | 过刊浏览 | 高级检索                                                            [打印本页]   [关闭]
地球物理
扩展功能
本文信息
Supporting info
PDF(3176KB)
[HTML全文]
参考文献[PDF]
参考文献
服务与反馈
把本文推荐给朋友
加入我的书架
加入引用管理器
引用本文
Email Alert
文章反馈
浏览反馈信息
本文关键词相关文章
全张量磁梯度
长方体
正演公式
本文作者相关文章
钟炀
管彦武
石甲强
肖锋
PubMed
Article by Zhong Y
Article by Guan Y
Article by Shi J
Article by Xiao F
长方体全张量磁梯度的两种正演公式对比
钟炀, 管彦武, 石甲强, 肖锋
吉林大学 地球探测科学与技术学院, 长春 130026
摘要: 全张量磁梯度测量是当前航空磁测的一个重要发展方向。正演是反演的基础,而长方体又是地下空间剖分的基本单元,故其正演公式具有重要的理论意义。笔者从前人给出的东南下坐标系和北东下坐标系的两种磁场三分量理论表达式出发,分别推导了长方体全张量磁梯度的计算公式。理论模型的两种正演结果对比表明,两种公式的计算结果完全相同,但北东下坐标系更实用。该坐标系下的长方体全张量磁梯度理论表达式更加简洁,文中相同模型体的正演节省约10%的时间。
关键词 全张量磁梯度   长方体   正演公式  
Comparison of two forward modeling formulas for full tensor magnetic gradient of cuboid
ZHONG Yang, GUAN Yan-wu, SHI Jia-qiang, XIAO Feng
College of Geo-exploration Science and Technology, Jilin University, Changchun 130026, China
Abstract: Full tensor magnetic gradient (FTMG) measurement is an important development direction of aero-magnetic measurement. Forward modeling is the foundation of inversion and the cuboid is the basic unit of under-ground space. So its forward modeling formula plays an important theoretical role. In this paper, the formulas for calculating the full tensor magnetic gradient of cuboids are derived based on two three-component magnetic field theoretical expressions which are in the east-south-down and the north-east-down coordinate system respectively. The comparison results of the theoretical model show that the calculation results of the two formulas are identical. However, the north-east-down coordinate system is more practical. The full tensor magnetic gradient formula of the cuboid under this coordinate system is more concise and saves about 10% of the time in the forward modeling of the same model.
Keywords: FTMG   cuboid   forward modeling formula  
收稿日期 2019-04-07 修回日期 2019-06-06 网络版发布日期  
DOI: 10.3969/j.issn.1004-5589.2019.04.018
基金项目:

国家重点研发计划项目(2017YFC0602000)

通讯作者: 肖锋(1977),男,博士,副教授,主要从事重力与磁法勘探研究工作。E-mail:xiaof@jlu.edu.cn
作者简介:
作者Email: xiaof@jlu.edu.cn

参考文献:
[1] 张昌达. 航空磁力梯度张量测量:航空磁测技术的最新进展[J]. 工程地球物理学报, 2006, 3(5):354-361. ZHANG Chang-da. Airborne tensor magnetic gradiome-try:the latest progress of airborne magnetometric technol-ogy[J]. Chinese Journal of Engineering Geophysics, 2006, 3(5):354-361.
[2] Nabighian M N, Grauch V J S, Hansen R O, et al. The historical development of the magnetic method in ex-ploration[J]. Geophysics, 2005, 70(6):33-61.
[3] Clark D A. New methods for interpretation of magnetic vector and gradient tensor data I:eigenvector analysis and the normalised source strength[J]. Exploration Ge-ophysics, 2012, 43(4):267-282.
[4] 迟铖, 吕俊伟. 磁梯度张量系统结构的比较分析[J]. 指挥控制与仿真, 2019, 41(1):46-49. CHI Cheng, LYU Jun-wei. Comparative analysis of mag-netic gradient tensor system structure[J]. Command Control and Simulation, 2019, 41(1):46-49.
[5] 舒晴, 马国庆, 刘财, 等. 全张量磁梯度数据解释的均衡边界识别及深度成像技术[J]. 地球物理学报, 2018, 61(4):1539-1548. SHU Qing, MA Guo-qing, LIU Cai, et al. Balanced edge detection and depth imaging technique for the inter-pretation of full-tensor magnetic gradient data[J]. Chi-nese Journal of Geophysics, 2018, 61(4):1539-1548.
[6] 吴招才, 刘天佑. 磁力梯度张量测量及应用[J]. 地质科技情报, 2008, 27(3):107-110. WU Zhao-cai, LIU Tian-you. Magnetic gradient tensor:its properties and uses in geophysics[J]. Geological Science and Technology Information, 2008, 27(3):107-110.
[7] 吴国超, 袁园, 张冲. 航空磁测探测目标发现率研究[J]. 世界地质, 2015, 34(1):240-247. WU Guo-chao, YUAN Yuan, ZHANG Chong. Study on target detection rate of aeromagnetic survey[J]. Global Geology, 2015, 34(1):240-247.
[8] 管志宁. 地磁场与磁力勘探[M]. 北京:地质出版社, 2005:119-121. GUAN Zhi-ning. Geomagnetic field and magnetic explo-ration[M]. Beijing:Geological Publishing House, 2005:119-121.
[9] 焦新华, 吴燕冈. 重力与磁力勘探[M]. 北京:地质出版社, 2009:170-185. JIAO Xin-hua, WU Yan-gang. Gravity and magnetic ex-ploration[M]. Beijing:Geological Publishing House, 2009:170-185.
[10] 骆遥, 姚长利. 长方体磁场及其梯度无解析奇点表达式理论研究[J]. 石油地球物理勘探, 2007, 42(6):714-719. LUO Yao, YAO Chang-li. Theoretical study on cuboid magnetic field and gradient expression without singular point[J]. Oil Geophysical Prospecting, 2007, 42(6):714-719.
[11] Kuang X T, Yang H, Zhu X Y, et al. Singularity-free expression of magnetic field of cuboid under undulating terrain[J]. Applied Geophysics, 2016, 13(2):238-248.
[12] 徐熠. 磁梯度张量异常反演算法与算例:硕士学位论文[D]. 北京:中国地质大学, 2015. XU Yi. Inversion of magnetic gradient tensor and exam-ple:master's degree thesis[D]. Beijing:China Uni-versity of Geosciences, 2015.
[13] 干博. 磁梯度张量研究与数据解释:硕士学位论文[D]. 南昌:东华理工大学, 2014. GAN Bo. The magnetic gradient tensor research and da-ta interpretation:master's degree thesis[D]. Nan-chang:East China Institute of Technology, 2014.
[14] 吕文杰. 磁梯度张量数据处理及其在磁铁矿勘探中的应用:硕士学位论文[D]. 南昌:东华理工大学, 2018. LYU Wen-jie. Magnetic gradient tensor data processing and its application in iron ore exploration:master's de-gree thesis[D]. Nanchang:East China Institute of Technology, 2018.
[15] 修春晓. 航磁全张量梯度数据软补偿及正反演方法研究:博士学位论文[D]. 北京:中国地质大学, 2018. XIU Chun-xiao. Research on soft compensation and for-ward and inverse problem of aeromagnetic tensor gradient data:doctor's degree thesis[D]. Beijing:China Uni-versity of Geosciences, 2018.
[16] 郭志宏, 管志宁, 熊盛青. 长方体ΔT场及其梯度场无解析奇点理论表达式[J]. 地球物理学报, 2004, 47(6):1131-1138. GUO Zhi-hong, GUAN Zhi-ning, XIONG Sheng-qing. Cuboid ΔT and its gradient forward theoretical expres-sions without analytic odd points[J]. Chinese Journal of Geophysics, 2004, 47(6):1131-1138.
[17] Afshar A, Norouzi G H, Moradzadeh A, et al. Applica-tion of magnetic and gravity methods to the exploration of sodium sulfate deposits, case study:Garmab mine, Semnan, Iran[J]. Journal of Applied Geophysics, 2018, 159:586-596.
[18] 肖晓, 黄保尚, 任政勇, 等. 基于自适应多层快速多极算法的大规模磁法正演模拟[J]. 地球物理学报, 2019, 62(3):1046-1056. XIAO Xiao, HUANG Bao-shang, REN Zheng-yong, et al. Large-scale forward modeling of magnetic data using an adaptive multi-level fast multipole method[J]. Chi-nese Journal of Geophysics, 2019, 62(3):1046-1056.
[19] 孙建国. 复杂地表条件下地球物理场数值模拟方法评述[J]. 世界地质, 2007, 26(3):345-362. SUN Jian-guo. Methods for numerical modeling of geo-physical fields under complex topographical conditions:a critical review[J]. Global Geology, 2007, 26(3):345-362.
[20] 姚长利, 郝天珧, 管志宁, 等. 重磁遗传算法三维反演中高速计算及有效存储方法技术[J]. 地球物理学报, 2003, 46(2):252-258. YAO Chang-li, HAO Tian-yao, GUAN Zhi-ning, et al. High-speed computation and efficient storage in 3-D gravity and magnetic inversion based on genetic algo-rithms[J]. Chinese Journal of Geophysics, 2003, 46(2):252-258.
[21] 谭承泽, 郭绍雍. 磁法勘探教程[M]. 北京:地质出版社, 1984:130-132. TAN Cheng-ze, GUO Shao-yong. The teaching course on magnetic exploration[M]. Beijing:Geological Publishing House, 1984:130-132.
[22] 董焕成. 重磁勘探教程[M]. 北京:地质出版社, 1993:131-132. DONG Huan-cheng. The teaching course on gravity and magnetic exploration[M]. Beijing:Geological Pub-lishing House, 1993:131-132.
[23] Abramowitz M, Stegun I A. Handbook of mathematical functions:with formulas, graphs, and mathematical ta-bles[M]. Washington:Courier Corporation, 1965:9-21.
[24] 李少洪, 毛士艺, 扈晓. 机载多目标跟踪系统模型和运动补偿[J]. 航空学报, 1996, 17(2):169-176. LI Shao-hong, MAO Shi-yi, HU Xiao. The model of MTT system and compensation of vehicle motion in air-borne Radar[J]. Acta Aeronautica et Astronautica Sinica, 1996, 17(2):169-176.
[25] Okabe M. Analytical expressions for gravity anomalies due to homogeneous polyhedral bodies and translations into magnetic anomalies[J]. Geophysics, 1979, 44(4):730-741.
[26] Chwala A, Stolz R, Zakosarenko V, et al. Full tensor SQUID gradiometer for airborne exploration[J]. ASEG Extended Abstracts, 2012, 2012(1):1-4.
本刊中的类似文章
1.苏晓轶, 李福文, 屈旭钧, 张天骥.长白山地区航磁异常居里面计算及其地质意义[J]. 世界地质, 2019,38(2): 492-498
2.张爽, 张楠, 吴贺宇, 李禄, 任俊龙, 吴燕冈.低飞航磁技术在江西朱溪矿区中的应用[J]. 世界地质, 2018,37(2): 595-601
3.郭惠莹, 杨长保.东北地区火成岩的航磁异常特征分析[J]. 世界地质, 2018,37(1): 243-249
4.江志强, 王建飞.航磁梯度数据解释新方法在迁安铁矿勘探中的应用[J]. 世界地质, 2017,36(3): 947-953,963
5.黄为俊, 张楠, 贾嵩, 潘玉焜, 查忆秋.动力三角翼低空磁测在多宝山地区的应用效果[J]. 世界地质, 2017,36(1): 241-245

Copyright by 世界地质