[an error occurred while processing this directive] ������� 2019, 38(3) 759-766 DOI:   10.3969/j.issn.1004-5589.2019.03.017  ISSN: 1004-5589 CN: 22-1111/P

����Ŀ¼ | ����Ŀ¼ | ������� | �߼�����                                                            [��ӡ��ҳ]   [�ر�]
��������
��չ����
������Ϣ
Supporting info
PDF(2408KB)
[HTMLȫ��]
�����[PDF]
�����
�����뷴��
�ѱ����Ƽ�������
�����ҵ����
�������ù�����
����
Email Alert
���·���
���������Ϣ
���Ĺؼ����������
��ҳ��
ԭλ����
�������
������ֵģ��
��Դ�ر���
���������������
����
Ѧ�ָ�
��ӢӢ
PubMed
Article by Sun X
Article by Xue L
Article by Wang Y
��ҳ��ԭλ��������������ֵģ�⼰��λ����
����, Ѧ�ָ�, ��ӢӢ
���ִ�ѧ�����ѧѧԺ, ���� 130061
ժҪ�� Ϊ�о�������ȼ�������ҳ����������ʱ��仯�Ĺ��ɣ����ҳ����ʺ���ҳ��ԭλ���ɵľ�λ������ʹ������ģ�����ANSYS�Զྮע�Ⱥ͵���ע�����ַ������������Ρ������κ��������ξ��鹲6��ģʽ��ģ���������¶ȳ�ģ�⡣ͨ��MATLAB��������ҳ�������Ļ�ѧ��Ӧ����ѧ���̵õ���Ӧʱ���µ���ҳ��ԭλ���ɵ������������Ƚϲ�ͬ��λ������Ͷ����������ģ������������ҳ�ҵ���������ע��ʱ������Ӷ����������ȿ������ע��36���º�����Ч���Ѳ����ԡ��ྮע�ȷ���������Ч�����ڵ���ע�ȣ���ҳ�������ľ�ֵ���ʱΪ����ģʽ�ĵ�20���£�Ϊ1 141.85 t��������ľ�ģʽ�ĵ�25���£�Ϊ1 034.63 t�����Ϊ����ģʽ�ĵ�22���£�Ϊ878.95 t���ڵ���ע��ģʽ�£���ֵ���ʱ���ڵ�33���£�Ϊ390.00 t���ྮע��ģʽ�¸�ģʽ����Դ�ر��ʷֱ�Ϊ2.73��1.74��2.05������ע��ģʽ����Դ�ر���Ϊ1.418��
�ؼ����� ��ҳ��   ԭλ����   �������   ������ֵģ��   ��Դ�ر���  
Numerical simulation of hydrocarbon generation process in in-situ exploitation of oil shale and discussion of well position
SUN Xu, XUE Lin-fu, WANG Ying-ying
College of Earth Sciences, Jilin University, Changchun 130061, China
Abstract: In order to study the regularity of hydrocarbon generation of oil shale using convection heating technology and find out the well location suitable for oil shale in-situ exploitation, multi-well heat injection and single well heat injection schemes, in the shapes of regular triangle, square and hexagon, as simplified models, were built to carry out the simulation of temperature field using the ANSYS software. Equations of the chemical reaction kinetics in oil shale hydrocarbon generation were constructed and solved by MATLAB software to obtain the amount of hydrocarbon generated during oil shale in-situ exploitation and compare the input and output results of different well locations. The simulation results show that the amount of hydrocarbon generated from oil shale increases with the heat injection process, it increases significantly first then slows down. After 36 months of heating, the growth is not obviously. The effect of multi-well heating plan is better than that of single-well. The maximum net hydrocarbon generation, occurs in the 20th month is the six well model which is 1 141.85 tons, followed by that in the 25th month of four well model, which is 1 034.63 tons. The last is in the 22nd month of three well model, which is 878.95 tons. In the single-well heating modes, the max hydrocarbon generation is 390.00 tons in the 33rd month. In the multi-well heating modes, the energy return ratios of each mode are 2.73, 1.74 and 2.05, respectively, and the energy return ratio of the single-well heating modes is 1.418.
Keywords: oil shale   in-situ exploitation   fluid heating   numerical simulation of hydrocarbon generation   energy return ratio  
�ո����� 2019-03-20 �޻����� 2019-05-05 ����淢������  
DOI: 10.3969/j.issn.1004-5589.2019.03.017
������Ŀ:

����ʡ�ش�Ƽ�������Ŀ��20170201001SF���뼪��ʡ��������ʮ���塱��ѧ������Ŀ��JJKH20180161KJ����������

ͨѶ����: Ѧ�ָ�(1962),��,��ʿ����ʦ,��Ҫ���²���ز�ѧ�����ģ�⼰��ά���ʽ�ģ�����о�.E-mail:190780877@qq.com
���߼��:
����Email: 190780877@qq.com

�ο����ף�
[1] Ǯ����, ����. ��ҳ��:ʯ�͵IJ�����Դ[M].����:�й�ʯ��������, 2011:1-150. QIAN Jia-lin, YIN Liang. Oil shale:supplementary energy for oil[M]. Beijing:China Petrochemical Press, 2011:1-150
[2] ���о�, ����ˮ, Ҷ����, ��. �й���ҳ����Դ��״[J]. ���ִ�ѧѧ��(�����ѧ��), 2006, 36(6):869-876. LIU Zhao-jun, DONG Qing-shui, YE Song-qing, et al. The situation of oil shale resources in China[J]. Journal of Jilin University(Earth Science Edition), 2006, 36(6):869-876.
[3] ����Ԫ, �μ���, ���, ��. ������ҳ�ҿ�̽�����ӹ����ý���:����2014�����������ҳ�ҹ��ʻ���[J]. ������Դ, 2015, 20(1):25-32. LI Shu-yuan, HE Ji-lai, HOU Ji-li, et al. Current status of the world's exploration and utilization of oil shale:a review of two oil shale international symposiums held in 2014[J]. Sino-Global Energy, 2015, 20(1):25-32.
[4] ����ѫ, ������, ֣����, ��. ������ҳ��ԭλ���ɼ�����չ[J]. ��Ȼ����ҵ, 2009, 29(5):128-132,148. LIU De-xun, WANG Hong-yan, ZHENG De-wen, et al. World progress of oil shale in-situ exploitation methods[J]. Natural Gas Industry, 2009, 29(5):128-132,148.
[5] �Խ��. ��ҳ��ԭλ����ѹ�ѻ�ѧ������ȡҳ�������ķ���������[P]. �й�,����ר��,CN103232852B. 2013. ZHAO Jin-min. Method and process for extracting shale oil and gas by oil shale in-situ shaft fracturing chemical dry distillation[P]. China,Patent,CN103232852B. 2013.
[6] ������, ���о�, ����, ��. ������ط���-����������ϰ���ͳ��ɽ������ҳ��Ʒ������������[J]. �������, 2016, 35(2):487-494. SONG Qing-lei, LIU Zhao-jun, HU Fei, et al. Oil shale characteristics of Upper Cretaceous Qiangshankou Formation in Fuyu-Changchunling area of Songliao Basin and its significance[J]. Global Geology, 2016, 35(2):487-494.
[7] Braun R L, Burnham A K. Mathematical model of oil generation, degradation, and expulsion[J]. Energy Fuels, 1990, 4(2):132-146.
[8] ������, ���Ѻ�, ����, ��. ѹ��-ע��ԭλ�ѽ���ҳ�Ҽ��ȹ��ռ�����ģ��[J]. ������ѧѧ��(��Ȼ��ѧ��), 2015, 36(9):1353-1357,1368. JIANG Peng-fei, SUN You-hong, GUO Wei, et al. Heating technology and heat transfer simulation for oil shale of in-situ pyrolysis by fracturing and nitrogen injection[J]. Journal of Northeastern University(Natural Science), 2015, 36(9):1353-1357,1368.
[9] Ѧ��ϼ. ��ҳ��������ѧ����ʵ�鼰��ԭλ���ɷ���̬�ȴ�����ѧģ���о�:˶ʿѧλ����[D]. ̫ԭ:̫ԭ����ѧ, 2007. XUE Jin-xia. The experiment research on physical & mechanicical characteristics of oil shale and its unsteady heat conduction mathematical model of in-situ processing:master's degree thesis[D]. Taiyuan:Taiyuan University of Technology, 2007.
[10] �׹���, ����, Ҧ����, ��. ��ҳ��ע����ԭλ������ֵģ��[J]. �й�ʯ�ʹ�ѧѧ��(��Ȼ��ѧ��), 2017, 41(2):100-107. LEI Guang-lun, LI Zi, YAO Chuan-jin, et al. Numerical simulation on in-situ upgrading of oil shale via steam injection[J]. Journal of China University of Petroleum(Edition of Natural Science), 2017, 41(2):100-107.
[11] Symington W A, Olgaard D L, Otten G A, et al. Exxon Mobil's electrofrac process for in-situ oil shale conversion[J]. Oil Shale:A Solution to the Liquid Fuel Dilemma, 2010, 1032:185-216.
[12] Lee K J, Moridis G, A Ehlig-Economides C. Numerical simulation of diverse thermal in-situ upgrading processes for the hydrocarbon production from kerogen in oil shale reservoirs[J].Energy Exploration & Exploitation, 2017, 35(3):315-337.
[13] Fan Y, Durlofsky L J, Tchelepi H A. Numerical simulation of the in-situ upgrading of oil shale[J]. SPE Journal, 2010, 15(2):368-381.
[14] ����. ��ҳ��ԭλ�����¶ȳ�����ֵģ��:˶ʿѧλ����[D]. ����:���ִ�ѧ, 2011. WANG Jian. Numerical simulation of temperature field for the in-situ upgrading of oil shale:master's degree thesis[D]. Changchun:Jilin University, 2011.
[15] ������,������,�, ��. ����������ҳ�ҿ��������ķ���[P]. �й�,����ר��,CN1676870.2010. ZHAO Yang-sheng, FENG Zeng-zhao, YANG Dong, et al. Method for convective heating oil shale to produce oil and gas[P]. China,Patent,CN1676870.2010.
[16] ����, �, ��־��, ��. ע����ԭλ������ҳ���Ƚ��¶�ȷ���������Է���[J]. ��ѧ�����빤��, 2015, 15(29):109-113. WANG Lei, YANG Dong, KANG Zhi-qin, et al. Experimental study on feasibility and proper temperature in-situ mining based overheat steam heating oil shale[J]. Science Technology and Engineering, 2015, 15(29):109-113.
[17] ��־��. ��ҳ���Ƚ����Լ�ԭλע�ȿ���������ģ���о�:��ʿѧλ����[D]. ̫ԭ:̫ԭ����ѧ, 2008. KANG Zhi-qin. The pyrolysis characteristics and in-situ hot drive simulation research that exploit oil-gas of oil shale:doctor's degree thesis[D]. Taiyuan:Taiyuan University of Technology, 2008.
[18] Han H, Zhong N N, Huang C X, et al. Numerical simulation of in situ conversion of continental oil shale in Northeast China[J]. Oil Shale, 2016, 33(1):45-57.
[19] Wellington S L, Berchenko I E, De Rouffignac E P, et al. In-situ thermal processing of an oil shale formation to produce a condensate[P]. United States,Patent, US20020131235.2002.
[20] Braun R L, Burnham A K. PMOD:a flexible model of oil and gas generation, cracking, and expulsion[J].Organic Geochemistry, 1992, 19(1/3):161-172.
[21] ���, ����, ������, ��. ��ҳ�ҵ��¸���ͬ�׶εIJ�������[J]. �������, 2015, 34(3):870-878. LI Bao-yi, LUO Wei, LIU Tian-lin, et al. Characteristics of grading low temperature carbonizationproducts of oil shale[J]. Global Geology, 2015, 34(3):870-878.
[22] ����, Ѧ�ָ�, �Խ��, ��. ��ҳ��ԭλ�ѽ⿪���¶ȳ���ֵģ������Ʒ����Ż�[J]. ��ѧ�����빤��, 2019, 19(5):94-103. MA Jian-xiong, XUE Lin-fu, ZHAO Jin-min, et al. Numerical simulation and design optimization of temperature field of oil shale in-situ pyrolysis and exploitation[J]. Science Technology and Engineering, 2019, 19(5):94-103.
[23] ����, Ѧ�ָ�, ����. ��ҳ��ԭλ���ɹ����п�϶�Ⱥ���͸�ʱ仯��ֵģ��[J]. ��ѧ�����빤��, 2018, 18(34):43-50. LI Yu-bo, XUE Lin-fu, MA Jian-xiong. Numerical simulation of the changes of porosity and permeability in in-situ pyrolysis of oil shale[J]. Science Technology and Engineering, 2018, 18(34):43-50.
[24] ��ǿ. ��ҳ��ԭλ���ѽ��¶ȳ���ֵģ�⼰ʵ���о�:��ʿѧλ����[D]. ����:���ִ�ѧ, 2012. LI Qiang. Simulation of temperature field and experiment of in-situ oil shale pyrolysis:doctor's degree thesis[D]. Changchun:Jilin University, 2012.
[25] �׳���, ³��, �����, ��. ������ԴͶ��ر��������ҹ�ҳ��������Ч�������о�:�Ը�˳ҳ����Ϊ��[J]. ��̬����, 2018, 34(9):94-98. KONG Chao-yang, LU Xi, DONG Xiu-cheng, et al. Estimation of the production efficiency of China's shale oil production:a case study of Fushun[J]. Ecological Economy, 2018, 34(9):94-98.
�������������
1�������, ����, ����, �Կ���, ���ѱ�.��������°���ͳ��������麬��ҳ����ϵ����ѧ�������л��ʸ�������[J]. �������, 2019,38(4): 1021-1031
2��������, ��С��, ţ���, ����, Ѧ�ָ�.��ҳ��ԭλ�����¶ȳ�������������[J]. �������, 2019,38(2): 448-453
3���촨, ������, ���о�, ��ƽ��, ���, ������.��Ե�㿨������٪��ͳʯ�Ź�����ҳ��Ʒ����������������ǰ��[J]. �������, 2017,36(3): 871-879
4�����˱�, ������, ���о�, ��ƽ��, ������, ������.��Ե�㿨������٪��ͳʯ�Ź���ҳ�Ҷ�ϡ��Ԫ�ص���ѧ�������������[J]. �������, 2017,36(3): 862-870,879
5���ܿ�, ���Ѻ�, ��ǿ, ����, ��ʿ��, ���.ũ����ҳ�����ؼ����������������о�[J]. �������, 2016,35(4): 1178-1184
6��л��Ȫ, ���о�, ����, ������, ��˶, ��˷, �ų�.������ض���¡�������� 3 ���ϰ���ͳ��ɽ������ҳ������[J]. �������, 2016,35(3): 850-857
7��������, ���о�, ����, л��Ȫ, ��˷.������ط���—����������ϰ���ͳ��ɽ������ҳ��Ʒ������������[J]. �������, 2016,35(2): 487-494
8����˶, ���о�, ��ƽ��.������ض���¡�����ϰ���ͳ�۽�����ҳ�Ҷε���ѧ��������Դ����[J]. �������, 2016,35(1): 108-122
9�����, ����, ������, �����.��ҳ�ҵ��¸���ͬ�׶εIJ�������[J]. �������, 2015,34(3): 870-878
10�����, Ҧ����, ��ƽ��, ������, ����, ������.÷�������ҳ������������[J]. �������, 2014,33(2): 457-464
11������, ����Ӣ, ���, ����ɽ.������ҳ����Դ����������״�뷢չǰ��[J]. �������, 2012,31(4): 772-777
12�����, ������, ������, ��ƽ��,.���ݺ�������ظ��л������Ҳ��Բ������о�����[J]. �������, 2012,31(4): 778-784
13��������, ����, ���о�, ������, ��ƽ��, ��С��, ������.���ӹ���ش���������ҳ���л�����ѧ���������������[J]. �������, 2012,31(2): 315-412
14�������, ������, ����, ��㻷.��ҳ�һ�����ȡ�������Ʊ������η������[J]. �������, 2010,29(4): 668-682
15�����.����ʡ��ҳ����Դ����������BOT ����ģʽ̽��[J]. �������, 2010,29(3): 514-521

Copyright by �������