[an error occurred while processing this directive] ������� 2019, 38(3) 690-707 DOI:   10.3969/j.issn.1004-5589.2019.03.011  ISSN: 1004-5589 CN: 22-1111/P

����Ŀ¼ | ����Ŀ¼ | ������� | �߼�����                                                            [��ӡ��ҳ]   [�ر�]
��������
��չ����
������Ϣ
Supporting info
PDF(8660KB)
[HTMLȫ��]
�����[PDF]
�����
�����뷴��
�ѱ����Ƽ�������
�����ҵ����
�������ù�����
����
Email Alert
���·���
���������Ϣ
���Ĺؼ����������
�๫��-ŭ������˹��
��-½��ײ
�����ؿ�
�J
ʨȪ��
���������������
��
���
���ط�
����
�ع���
PubMed
Article by Peng B
Article by Li B
Article by Zhao T
Article by Zhou L
Article by Qin G
���������ؿ�JʯӢ�����Ҽ�þ����΢�����������԰ࡪŭ����˹����٪���������ݻ�����ʾ
��1,2, ���1,2, ���ط�3, ����4, �ع���5
1. �й����ʿ�ѧԺ�����Դ�о���, ���� 100037;
2. ��Ȼ��Դ�������Դ�ɿ���������Ԥ���ص�ʵ����, ���� 100037;
3. ���ִ�ѧ�����ѧѧԺ, ���� 130061;
4. �Ĵ�ʡ���ʿ�����鿪���ֻ�̽��, �Ĵ����� 618000;
5. �ɶ�����ѧ�����ѧѧԺ, �ɶ� 610059
ժҪ�� �ڰ๫����ŭ����ϴ���Ե����ʶ���һ����-��٪�����ҽ��Ҵ������γ�ʱ������ǰ������Ϊ�������������һ����Ϊ������ʶ�๫����ŭ������˹�󸩳弫��������ṩ���µ����ϡ����������ذ�������J����Ϊ�о����󣬿�չ������ʼ�����ѧ���ʯU-Pb���ѧ������ѧ��ȫ��Sr-Ndͬλ���о����о��������J����������ҪΪʯӢ�����ң��������ձ鷢����ɫ��þ����΢�����塣�JʯӢ�����Ҽ�þ����΢��������ʯU-Pb����ֱ�Ϊ153±2 Ma��150±2 Ma����������Χ��һ�£�������ͬ���ҽ��¼��IJ������ѧ������ʾ�JʯӢ���������ڸƼ���׼������ʯϵ�У�þ����΢��������������ϵ�е�׼������ʯ��þ����΢�����������ʯӢ�����Ҿ������Ƶ�ϡ����΢��Ԫ��������ߣ���������΢������Nb��Ta��Zr��Hf��Ԫ�غ������ͣ���ϡ���������ߡ�ʯӢ��������Ʒ��87Sr/86Sr��iֵ����0.714 2~0.715 2֮�䣬��Nd��t��ֵΪ-12.0~-14.0��þ����΢��������Ʒ��87Sr/86Sr��iֵΪ0.712 9~0.714 4����Nd��t��ֵ����-11.4~-13.8֮�䡣�ۺ�����ѧ������ѧ���������J�����еļ���ʯӢ�����Ҽ���þ����΢������ܿ����Ǹ��������Դ��þ�����ҽ�����ϵؿ����������γɵij�Ӣ���ҽ�������ͬ����������õĽ��������������ݻ����о����J��������γ��ڰ๫����ŭ������˹�����򸩳�������£�ʨȪ�Ӷൺ����ϵͳ��������ؿ鷢����-½����ײ�Ĺ��챳����
�ؼ����� �๫��-ŭ������˹��   ��-½��ײ   �����ؿ�   �J   ʨȪ��  
Petrogenesis of quartz diorite and mafic microgranular enclaves from Geji pluton in Lhasa terrance, Tibet and its implications for Late Jurassic tectonic evolution of Bangonghu-Nujiang Tethys Ocean
PENG Bo1,2, LI Bao-long1,2, ZHAO Tuo-fei3, ZHOU Lei4, QIN Guang-zhou5
1. Institute of Mineral Resources, Chinese Academy of Geological Science, Beijing 100037, China;
2. MNR Key Laboratory of Metallogeny and Mineral Assessment, Beijing 100037, China;
3. College of Earth Sciences, Jilin University, Changchun 130061, China;
4. Geochemistry Exploration Brigade of Sichuan Bureau of Exploration and Development of Geology and Minerals Resources, Deyang 618000, Sichuan, China;
5. College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, China
Abstract: A Middle-Late Jurassic magmatic belt has been newly identified in the southern margin of the Bangonghu-Nujiang junction zone, its forming ages is not Early Cretaceous that was defined by the predecessors. This discovery provides new information for re-defining the subduction polarity and process of the Bangonghu-Nujiang Tethys Ocean. Taking the Geji pluton in Ali area of Tibet as a research target, the authors camed out studies on rock geology and petrography, zircon U-Pb dating, geochemistry and whole rock Sr-Nd isotopes. The results show that Geji pluton consists of quartz diorite, in which mafic microgranular enclaves (MMEs) are well developed. The zircon U-Pb ages of the Geji quartz diorite and MMEs are 153 ±2 Ma and 150 ±2 Ma, respectively, which are consistent within test error, representing contemporaneous magmatic event. Geochemical characteristics show that Geji quartz diorite belongs to a series of calc-alkaline metaluminous rock, whereas the MMEs are tholeiite series metaluminous rock. The Geji quartz diorite and MMEs have similar REEs and trace elements distribution patterns, but MMEs contain lower content of Nb, Ta, Zr, Hf and higher total rare earth. The (87Sr/86Sr)i values of quartz diorite are between 0.714 2 and 0.714 4, ��Nd(t)=-12.0~-14.0, and the MMEs have the (87Sr/86Sr)i values of 0.712 9~0.714 4 and the ��Nd(t) values of -11.4~-13.8. Combined with petrography and geochemical characteristics, the host quartz diorite and MMEs from Geji pluton are believed to be the results of mixing of mafic magma derived from enriched mantle with felsic magma derived from ancient crust in different proportions. Based on regional tectonic evolution, Geji pluton may be formed in the background of the arc-continent soft collision between Shiquanhe archipelagic arc-basin system and ancient Lhasa block, associated with the southward subduction of Bangonghu-Nujiang Thethys ocean.
Keywords: Bangonghu-Nujiang Tethys Ocean   arc-continent collision   Lhasa block   Geji   Shiquanhe  
�ո����� 2019-04-03 �޻����� 2019-04-25 ����淢������  
DOI: 10.3969/j.issn.1004-5589.2019.03.011
������Ŀ:

������Ȼ��ѧ����41802103�����й���ʿ���ѧ����2018M641434�����й����ʵ������Ŀ��DD20190167����������

ͨѶ����:
���߼��:
����Email:

�ο����ף�
[1] �ƾ���, ����, ����, ��. ��������¡��ͭ(����)�󴲵�������������ģ��-��������ǧ��ּ�����-dz�ɵ�����Һ�Ϳ�[J]. ����ѧ��, 2016, 37(6):663-690. TANG Ju-xing, SONG Yang, WANG Qin, et al. Geological characteristics and exploration model of the Tiegelongnan Cu(Au-Ag) deposit:the first ten million tons metal resources of a porphyry-epithermal deposit in Tibet[J]. Acta Geoscientica Sinica, 2016, 37(6):663-690.
[2] �ƾ���, ����, ���, ��. ���ذ���-������-dz�ɵ�����Һͭ�������ɿ����á����鷽������ԴDZ��[J]. ����ѧ��, 2017, 38(5):571-613. TANG Ju-xing, WANG Qin, YANG Huan-huan, et al. Mineralization, exploration and resource potential of porphyry-skarn-epithermal copper polymetallic deposits in Tibet[J].Acta Geoscientica Sinica, 2017, 38(5):571-613.
[3] ��,���,������,��. ���ذ๫��-ŭ���ɿ������ײ�ڳɿ�����:�ٸ������ʯ����ѧ��ͬλ�������֤��[J]. ��ʯѧ��, 2019, 35(3):705-723. PENG Bo, LI Bao-long, LIU Hai-yong, et al. Main collisional mineralization of Bangong-Nujiang metallogenic belt, Tibet:geochronological, geochemical and isotopic evidence from Rongga molybdenum deposit[J]. Acta Petrologica Sinica, 2019, 35(3):705-723.
[4] Wang B D, Wang L Q, Chung S L, et al. Evolution of the Bangong-Nujiang Tethyan ocean:insights from the geochronology and geochemistry of mafic rocks within ophiolites[J]. Lithos, 2016, 245:18-33.
[5] Fan J J, Li C, Xie C M, et al. The evolution of the Bangong-Nujiang Neo-Tethys ocean:evidence from zircon U-Pb and Lu-Hf isotopic analyses of Early Cretaceous oceanic islands and ophiolites[J]. Tectonophysics, 2015, 655(1):27-40.
[6] Fan J J, Li C, Xie C M, et al. Petrology and U-Pb zircon geochronology of bimodal volcanic rocks from the Maierze Group, northern Tibet:constraints on the timing of closure of the Banggong-Nujiang Ocean[J]. Lithos, 2015, 227:148-160.
[7] ���,��,�ع���,��. ��-ŭ��ϴ����θJ���������һ��ij���:Ԫ�ص���ѧ���ʯU-Pb���ѧ��Hfͬλ��Լ��[J]. ��ʯѧ��, 2019, 35(3):687-704. LI Bao-long, PENG Bo, QIN Guang-zhou, et al. Petrogenesis of the Pa'a batholiths in the Geji area, western segment of the Bangong Co-Nujiang River suture zone:constraints by geochemistry, zircon U-Pb geochronology and Hf isotope[J]. Acta Petrologica Sinica, 2019, 35(3):687-704.
[8] ��,���,�ع���,��. ���������ؿ��κ�ʯӢ�����ҳ���:�ʯSHRIMP U-Pb���ѧ������ѧ��Sr-Nd-Pb-Hfͬλ�ص���Լ[J]. ����ѧ��, 2019, 93(3):606-621. PENG Bo, LI Bao-long, QIN Guang-zhou, et al. Petrogenesis of the granodiorite in the Yanhu area of Lhasa terrance, Tibet:constraints from zircon SHRIMP U-Pb geochronology, geochemistry and Sr-Nd-Pb-Hf isotopes[J]. Acta Geologica Sinica, 2019, 93(3):606-621.
[9] Kapp P, DeCelles P G, Gehrels G E, et al. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet[J]. Geological Society of America Bulletin, 2007, 119(7/8):917-932.
[10] Zhu D C, Li S M, Cawood P A, et al. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction[J]. Lithos, 2016, 245:7-17.
[11] Zhu D C, Zhao Z D, Niu Y L, et al. The Lhasa terrane:record of a microcontinent and its histories of drift and growth[J]. Earth and Planetary Science Letters, 2011, 301:241-255.
[12] ��־, ��ع��, �ƾ���, ��. �����ض���-������ͭ�������ɽ�����ѧ������ѧ[J]. �����ѧ, 2015, 40(1):77-97. ZHANG Zhi, CHEN Yu-chuan, TANG Ju-xing, et al. Zricon U-Pb age and geochemical characteristics of volcanic rocks in Gaerqiong-Galale Cu-Au ore district, Tibet[J]. Earth Science, 2015, 40(1):77-97.
[13] Fan J J, Li C, Xie C M, et al. Petrology, geochemistry, and geochronology of the Zhonggang ocean island, northern Tibet:implications for the evolution of the Banggongco-Nujiang oceanic arm of the Neo-Tethys[J]. International Geology Review, 2014, 56(12):1504-1520.
[14] �˹���, Ī��ѧ, ����ǫ, ��. �Ե�˹��ɽ����ʱ�սṹ���ݻ�[J]. ��ʯѧ��, 2006, 22(3):521-533. PAN Gui-tang, MO Xuan-xue, HOU Zeng-qian, et al. Spatial-temporal framework of the Gangdese orogenic belt and its evolution[J]. Acta Petrologica Sinica, 2006, 22(3):521-533.
[15] ������, ��ܳ�, ��־��, ��. ����Ǽ����Ե���Ǵ���������������ʯU-Pb���ѧ��Hfͬλ�ؼ�������[J]. ��ʯѧ��, 2011, 27(7):2034-2044. CHANG Qing-song, ZHU Di-cheng, ZHAO Zhi-dan, et al. Zircon U-Pb geochronology and Hf isotopes of the Early Cretaceous Rena-Co rhyolites from southern margin of Qiangtang, Tibet, and their implications[J]. Acta Petrologica Sinica, 2011, 27(7):2034-2044.
[16] Zhu D C, Mo X X, Niu Y L, et al. Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane, Tibet[J]. Chemical Geology, 2009, 268:298-312.
[17] Sui Q L, Wang Q, Zhu D C, et al. Compositional diversity of ca. 110 magmatism in the northern Lhasa terrane, Tibet:implications for the magmatic origin and crustal growth in a continent-continent collision zone[J]. Lithos, 2013,168-169:144-159.
[18] Li S M, Zhu D C, Wang Q, et al. Northward subduction of Bangong-Nujiang Tethys:insight from Late Jurassic intrusive rocks from Bangong Tso in western Tibet[J]. Lithos, 2014, 205:284-297.
[19] Wei S G, Tang J X, Song Y, et al. Early Cretaceous bimodal volcanism in the Duolong Cu mining district, western Tibet:record of slab breakoff that triggered ca. 108~113 Ma magmatism in the western Qiangtang terrane[J]. Journal of Asian Earth Sciences, 2017, 138:588-607.
[20] Yuan H L, Gao S, Liu X M, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry[J]. Geostandards and Geoanalytical Research, 2004, 28(3):353-370.
[21] Belousova E, Griffin W, O'Reilly S Y, et al. Fisher igneous zircon:trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy Petrology, 2002, 143(5):602-622.
[22] Watson E B, Harrison T M. Zircon saturation revisited, temperature and composition effects in a variety of crustal magma types[J]. Earth and Planetary Science Letters, 1983, 64:295-304.
[23] Boynton W V. Geochemistry of the rare earth elements:meteorite studies[M]. Amsterdam:Elsevier, 1984:63-114.
[24] Sun S S, McDonough W F. Chemical and isotopic systemmatics of ocean basalsts:implication for mantle composition and processes[M].London:Special Publication, 1989:313-345.
[25] Bonin B. Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two constrasting, mantle and crust, sources? a review[J]. Lithos, 2004, 78(1/2):1-24.
[26] Vernon R H. Micro-granitoid enclaves:globules of hybrid magma quenched in a plutonic environment[J]. Nature, 1984, 304:438-439.
[27] Clemens J D,Wall V J. Controls on the mineralogy of S-type volcanic and plutonic rocks[J]. Lithos, 1988, 21(1):53-66.
[28] Dahlquist J A. Mafic microgranular enclaves:early segregation from metaluminous magma (Sierra de Chepes), Pampean Ranges, NW Argentina[J]. Journal of South American Earth-Sciences, 2002, 15(6):643-655.
[29] Donaire T, Pascual E, Pin C, et al. Microgranular enclaves as evidence of rapid cooling in granitoid rocks:the case of the Los Pedroches granodiorite, Iberian Massif, Spain[J]. Contributions to Mineralogy and Petrology, 2005, 149(3):247-265.
[30] Shellnutt J G, Jahn B M, Dostal J. Elemental and Sr/Nd isotope geochemistry of microgranular enclaves from peralkaline A-type granitic plutons of the Emeishan large igneous province, SW China[J]. Lithos, 2010, 119(1/2):34-46.
[31] Barbarin B, Didier J. Genesis and evolution of mafic microgranular enclaves through various types of interaction between coexisting felsic and mafic magmas:transactions of the royal[J]. Society of Edinburgh Earth-Sciences, 1992, 83:145-153.
[32] Chappell B W, White A J R,Wyborn D. The importance of residual source material (restite) in granite petrogenesis[J]. Journal of Petrology, 1987, 28:1111-1138.
[33] Collins W J, Wiebe R A, Healy B, et al. Replenishment, crystal accumulation and floor aggradation in the megacrystic Kameruka Suite, Australia[J] Journal of Petrology, 2006, 47:2073-2104.
[34] Barbarin B. Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California:nature, origin, and relations with the hosts[J]. Lithos, 2005, 80(1/4):155-177.
[35] Feeley T C, Wilson L F, Underwood S J. Distribution and compositions magmatic inclusions in the Mount Helen dome, Lassen volcanic center, California:insights into magma chamber processes[J]. Lithos, 2008, 106(1/2):173-189.
[36] Langmuir G H, Vocke Jr R D, Hanson G N, et al. General mixing equation with applications to Icelandic basalts[J]. Earth and Planetary Science Letters, 1978, 37(3):380-392.
[37] ţ����, ������, ����, ��. ��Ե����ɽ������ҽ��������:��������ѧ������ѧ�͵���ѧ֤��[J]. ��ʯѧ��, 2018, 34(7):1991-2016. NIU Man-lan, ZHAO Qi-qi, WU Qi, et al. Magma mixing identified in the Guokeshan pluton, northern margin of the Qaidam Basin:evidences from petrography, mineral chemistry, and whole-rock geochemistry[J]. Acta Petrologica Sinica, 2018,34(7):1991-2016.
[38] Saunders A D, Norry M J,Tarney J. Origin of MORB and chemically-depleted mantle reservoirs:trace element constraints[J]. Journal of Petrology, 1988(Spec.1):415-445.
[39] Weaver B L. The origin of ocean island basalt end-member compositions:trace element and isotopic constrains[J]. Earth and Planetary Science Letters, 1991, 104(2/4):381-397.
[40] Rapp R P, Watson E B. Dehydration melting of metabasalt at 8~32 kbar:implications for continental growth and crust-mantle recycling[J]. Journal of Petrology, 1995, 36(3):891-931.
[41] ������. ���������ؿ��κ�������������ҽ������ѧ����ʯ���򼰹�������:˶ʿѧλ����[D]. ����:�й����ʴ�ѧ(����), 2014. SUI Qing-lin. Chronology, petrogenesis, and tectonic implication of magmatic rocks from Yanhu in northern Lhasa terrane, Tibet:master's degree thesis[D]. Beijing:China University of Geosciences (Beijing), 2014.
[42] Wang Q, Zhu D C, Zhao Z D, et al. Origin of the ca. 90 Ma magnesia-rich volcanic rocks in SE Nyima, central Tibet:products of lithospheric delamination beneath the Lhasa-Qiangtang collision zone[J]. Lithos, 2014,198-199(3):24-37.
[43] ����, ����ǿ, ��������, ��. ���ذ๫��-ŭ����ϴ���Ե�J������٪�������ư��ҵij���:�ʯU-Pb���ꡢ����ѧ��Hfͬλ��Լ��[J]. ����ѧ��, 2017, 38(5):723-733. WANG Yong, WANG Li-qiang, DANZHEN Wang-xiu, et al. The discovery of Late Jurassic rhyolite porphyry in Geji area, southern Bangong Co-Nujiang suture zone, Tibet:constraints from zircon U-Pb geochronology, geochemistry and Hf isotopes[J]. Acta Geoscientica Sinica, 2017, 38(5):723-733.
[44] Coulon C, Maluski H, Bollinger C, et al. Mesozoic and Cenozoic volcanic rocks from central and southern Tibet:30Ar/40Ar dating,petrological characteristics and geodynamical significance[J]. Earth and Planetary Science Letters, 1986, 79:281-302.
[45] Wang Y, Tang J X, Wang L Q, et al. Petrogenesis of Jurassic granitoids in the west central Lhasa subterrane, Tibet, China:the Geji example[J]. International Geology Review, 2018, 60(9):1155-1171.
[46] Cao M J, Qin K Z, Li G M, et al. Tectono-magmatic evolution of Late Jurassic to Early Cretaceous granitoids in the west central Lhasa subterrane, Tibet[J]. Gondwana Research, 2016, 39:386-400.
[47] ������, ����, ���鲨, ��. ����������๫������˹���踩���йصĻ�������ѧ�͵���ѧ[J]. ����ѧ, 2009, 38(6):523-535. QU Xiao-ming, WANG Rui-jiang, XIN Hong-bo, et al. Geochronology and geochemistry of igneous rocks related to the subduction of the Tethys oceanic plate along the Bangong Lake arc zone, the western Tibetan plateau[J]. Geochinica, 2009, 38(6):523-535.
[48] ֣��ҵ, ���ٿ�, �����, ��. �ʯSHRIMP�����ʨȪ���������γɺ͸����ʱ��Լ��[J]. ��ʯѧ��, 2006, 22(4):895-904. ZHENG You-ye, XU Rong-ke, MA Guo-tao, et al. Ages of generation and subduction of Shiquan river ophiolite:restriction from SHRIMP zircon dating[J]. Acta Petrologica Sinica, 2006, 22(4):895-904.
[49] Murphy M A, Yin A, Harrison T M, et al. Did the Indo-Asian collision alone create the Tibetan plateau?[J]. Geology,1997, 25(8):719-722.
[50] Crosson R S, Owens T J. Slab geometry of the Cascadia subduction zone beneath Washington from earthquake hypocenters and teleseismic converted waves (USA)[J]. Geophysical Research Letters, 2013, 14(8):824-827.
[51] ֣��ҵ, ���ٿ�, ������, ��. ����ʨȪ�����̻����Ҵ�:һ���µĶൺ����ϵͳ���嶨������[J]. ����������˹����, 2004, 24(1):13-20. ZHENG You-ye, XU Rong-ke, HE Lai-xin, et al. The Shiquan river ophiolitic mélange zone in Xizang:the delineation and significance of a new archipelagic arc-basin system.[J]. Sedimentary Geology and Tethyan Geology, 2004, 24(1):13-20.
�������������
1��������, �ڽ齭, ����, �����.С�˰��롰��Ԫ�Ŵ�������ɽȺ�������Ƭ��״�������ʯU-Pb���ꡢHfͬλ����������������[J]. �������, 2019,38(4): 910-920
2���ֺ���, ����, ���庣, ����ѩ, ���Ѻ�.���˰����жκ���ǵ���������������ҵij������������[J]. �������, 2019,38(4): 921-930
3��������, �����, ����ʤ, ����ʤ, ����, ղ����.�����в����ܷ廨���������ʯU-Pb���ѧ����ʯ����ѧ����[J]. �������, 2019,38(4): 931-943
4���˽�, �����, �����.�ຣʡ����������������»��ּ���������[J]. �������, 2019,38(4): 900-909
5������, ������, ���庣, ��ϣ��, �»��.���˰��뱱��������������������������ҵij��򼰹�������[J]. �������, 2019,38(3): 655-667
6���ι���, ����, ����, ������, κ����.���˰����ж�ͻȪ��غ��ո����ɽ�ҵ���ѧ����[J]. �������, 2019,38(3): 681-689
7�����ֱ�, ��Ԫ��, ��Ծ��, ���̴�, ���ѧ.���ɹ��в����պ͵�������������������������[J]. �������, 2019,38(3): 598-610
8�����廪, ��ѩ��, ����, �̺��, ����Դ.���ɹ������������϶���ͳ����̼������΢��Ԫ�غ�ϡ��Ԫ�ص���ѧ���������������[J]. �������, 2019,38(3): 611-622
9����Т��, ������, ��ά��, ����, �»��.���˰��뱱�������������������������ѧ������ѧ����[J]. �������, 2019,38(3): 643-654
10������ѩ, ���ʤ, ������, ����, ����ΰ.���˰��뱱��˹ľ�Ʊ�ɽ����Sr��Yb�͡����������ѧ����ʯ����ѧ��������������[J]. �������, 2019,38(3): 668-680
11����־ӱ, �����, ����, ������.�ຣ������Ī����������������������������ڰ����ʯU2Pb���ѧ������ѧ����[J]. �������, 2019,38(2): 309-321
12������, ������, ������, ������, ���ӻ�.���ɹ����׵������ڰ�����ʯ���򼰹��챳��[J]. �������, 2019,38(1): 46-57
13������Ԫ, ��Ծ��, ������, ������.��ʷ��������С��������Ԫ�صĸ������󣺶Թ��������ɹ����໯ʯ�ĵ���̽�������ʵ��[J]. �������, 2019,38(1): 11-19
14�����, ����Ӣ, ��ʿ��, ֣����.���˰��뱱�μ�Դ���������������������ʯU����Pb���估����ѧ����[J]. �������, 2019,38(1): 108-118
15��ȫ�i��, ���ڷ�, ���, ������.³��۰��������΢��Ԫ�غ��ʯU-Pb���ѧ���Ի���½�鶫����ʯȦ��᣸������ʾ[J]. �������, 2019,38(1): 58-67

Copyright by �������