[an error occurred while processing this directive] ������� 2019, 38(1) 80-93 DOI:   10.3969/j.issn.1004-5589.2019.01.008  ISSN: 1004-5589 CN: 22-1111/P

����Ŀ¼ | ����Ŀ¼ | ������� | �߼�����                                                            [��ӡ��ҳ]   [�ر�]
��������
��չ����
������Ϣ
Supporting info
PDF(8839KB)
[HTMLȫ��]
�����[PDF]
�����
�����뷴��
�ѱ����Ƽ�������
�����ҵ����
�������ù�����
����
Email Alert
���·���
���������Ϣ
���Ĺؼ����������
I�ͻ�����
�ʯU-Pb���ѧ
����ѧ
�������
��·������������
��ɽ����
���������������
������
������
�����
������
������
PubMed
Article by Gao T
Article by Liu Z
Article by Guan Q
Article by Li P
Article by Chen Y
���ְ�ɽ��·������������LA-ICP-MS�ʯU-Pb���ꡢ����ѧ��������������
������, ������, �����, ������, ������
���ִ�ѧ�����ѧѧԺ, ���� 130061
ժҪ�� �Լ��ְ�ɽ��·�����������ҽ�������ѧ��LA-ICP-MS�ʯU-Pb�������ʯ����ѧ���о�����ȷ�����γ�ʱ���͹��챳�����ʯU-Pb����ļ�Ȩƽ������Ϊ163.3±0.77 Ma��MSWD=0.86������ʯ����ѧ�������������·�����������Ҿ��и�Na2O��K2O������K2O/Na2O�ı�ֵΪ0.78~1.20����MgO������A/CNKֵΪ1.01~1.09������Ba��Cs��K��Sr�ȴ�������ʯԪ�أ�����Nb��Ti��P�ȸ߳�ǿԪ�أ�����ϡ��Ԫ�ط������ԡ���EuֵΪ0.93~1.06�������������ʸƼ���ϵ��I�ͻ����ҡ���·�����������ҵ�Sr/Y��ֵΪ47.9~57.0��LaN/YbN�ı�ֵΪ15.67~17.44��Ϊ������ʻ����ҡ���·�����������ҵij���Ϊ����۹������µؿ����������²������ڣ�����������ݻ��������Ʋ���·���������������ڹ�̫ƽ������ŷ�Ǵ�½����ʱ�Ĺ��컷�����γɡ�
�ؼ����� I�ͻ�����   �ʯU-Pb���ѧ   ����ѧ   �������   ��·������������   ��ɽ����  
LA-ICP-MS zircon U-Pb dating,geochemical characteristics and tectonic significance of Xinlu granodiorite porphyry in Baishan area,Jilin Province
GAO Tian-yu, LIU Zheng-hong, GUAN Qing-bin, LI Peng-chuan, CHEN Yu-song
College of Earth Sciences, Jilin University, Changchun 130061, China
Abstract: Petrography,LA-ICP-MS zircon U-Pb dating and lithogeochemistry data have been obtained from Xinlu granodiorite porphyry in Baishan area of Jilin Province to determine the formation age and tectonic background. The zircon U-Pb dating confirms that the weighted mean diagenetic age is 163.3±0.77 Ma (MSWD=0.86). The analysis results of lithogeochemistry show that the Xinlu granodiorite porphyry has high Na2O and K2O contents, Na2O/K2O of 0.78~1.20, low MgO content, and A/CNK value of 1.01 to 1.09. It is enriched in large ion lithophile elements Ba and Cs,K, Sr,but depleted in high field strength elements Nb, Ti and P, with obvious light and heavy rare earth element fractionation, and ��Eu of 0.93~1.06,which belongs to weak peraluminous calc-alkaline series I-type granites. The Sr/Y ratio of Xinlu granodiorite porphyry is 47.9~57.0, and LaN/YbN is 15.67~17.44,indicating that it belongs to adakite. The lithogenesis of Xinlu granodiorite porphyry is partial melting due to the thickening of the lower crust during the plate convergence. Combined with the regional tectonic evolution background, the authors speculate that the Xinlu granodiorite-porphyry was formed in the tectonic environment when the subduction of the Paleo-Pacific Plate to the Eurasian Plate occurred.
Keywords: I-type granite   ziron U-Pb chronology   geochemistry   adakite   Xinlu granodiorite porphyry   Baishan area  
�ո����� 2018-06-21 �޻����� 2018-12-17 ����淢������  
DOI: 10.3969/j.issn.1004-5589.2019.01.008
������Ŀ:

�й����ʵ������Ŀ��12120114028001��1212011220854��.

ͨѶ����: ������(1960-),��,����,��ʿ�о�����ʦ,������΢����ȷ�����о�.E-mail:zhlliu@jlu.edu.cn
���߼��:
����Email: zhlliu@jlu.edu.cn

�ο����ף�
[1] �ḣƼ. ����-�����������������ʯU-Pb���ѧ�͵���ѧ:�Ի�������ͨ�ƻ�ʱ�շ�Χ����Լ:��ʿѧλ����[D].����:���ִ�ѧ,2008. PEI Fu-ping. Zircon U-Pb chronology and geochemistry of Mesozoic intrusive rocks in southern Liaoning and Jilin provinces:constraints on the spatial-temporal extent of the North China Craton destruction:doctor's degree thesis[D]. Changchun:Jilin University, 2008.
[2] ���, ����, ����,��.���ֶ��ϲ��������������Ի�ɽ���ó���ĵ���ѧ��Լ[J].��ʯѧ��,2010,26(4):1074-1088. LI Chao-wen, GUO Feng, ZHAO Liang, et al. Geochemical constraints on petrogenesis of Late Mesozoic intermediate-felsic volcanic rocks from the southeastern Jilin Province, NE China[J]. Acta Petrologica Sinica, 2010, 26(4):1074-1088.
[3] Wu F Y, Sun D Y, Li H M, et al. A-type granites in northeastern China:age and geochemical constraints on their petrogenesis[J]. Chemical Geology, 2002, 187(1):143-173.
[4] �ؼ�.���ֶ��ϲ����������ɫ�����ɿ�����о�:��ʿѧλ����[D].����:���ִ�ѧ,2005. GUAN Jian. Study on mentallogenetic law of precious and non ferrous deposits in the southeast part of Jilin Province:doctor's degree thesis[D]. Changchun:Jilin University, 2005.
[5] �α�.�뽭ú���Ƹ������������ݻ�����úԶ����Ԥ��:��ʿѧλ����[D].����:������ѧ,2009. HE Bao. The feature and evolution of nappe structure and coal prospect area predication of Hunjiang coalfield:doctor's degree thesis[D]. Shenyang:Northeastern University, 2009.
[6] Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15):1535-1546.
[7] Andersen T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002,192(1/2):59-79.
[8] Ludwing K R. Use's Manual for ISOPOT/EX(Rev. 2.49):a geochronological toolkit for microsoft excel[M]. Berkeley:Berkeley Geochronology Center, 2001.
[9] �����,Ф��,����,��.���������غ��߷�����ͻ����ҵij���:�ʯU-Pb���ѧ������ѧ��Nd-Hfͬλ����Լ[J].��ʯѧ��, 2008, 24(11):2468-2484. QIU Jian-sheng, XIAO E, HU Jian, et al. Petrogenesis of highly fractionated I-type graintes in the coastal area of northeastern Fujian Province:constraints from zircon U-Pb geochronology, geochemisty and Nd-Hf isotopes[J]. Acta Petrologica Sinica,2008,24(11):2468-2484.
[10] Watson E B, Harrison T M. Zircon saturation revisited:temperature and composition effects in a variety of Vrustal magma types[J]. Earth and Planetary Science Letters,1983,64(2),295-304.
[11] ������,��Ծ��.���˰��붫�����������ʯ�����¶ȼ����������[J].�������,2011,30(2):162-172. SUI Zhen-min, CHEN Yue-jun. Zircon saturation temperatures of granites in eastern Great Xing'an Range,and its geological signification[J].Global Geology,2011,30(2:162-172.
[12] ��ά��,������,����,��.�ɶ�������������LA-ICP-MS�ʯU-Pb���ꡢ����ѧ��������������[J].�����ѧ�뻷��ѧ��,2016,38(5):623-637. CUI Wei-long, LIU Zheng-hong, DU Yang,et al. LA-ICP-MS zircon U-Pb dating, geochemical characteristics and geological significance of Daxing pluton in Liaodong area[J].Journal of Earth Sciences and Environment, 2016,38(5):623-637.
[13] King P L, White A J R, Chappell B W, et al. Characterization and origin of aluminous A-type granites from the Lachlan fold belt, southeastern Australia[J]. Journal of Petrology,1997,38(3):371-391.
[14] Whalen J B, Currie K L,Chappell B W. A-type granites:geochemical characteristice, discrimination and petrogeresis[J].Contributions to Mineralogy and Petrology,1987,95(4):407-419.
[15] Defant M J, Drummond M S. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature,1990,347(6294):662-665.
[16] Kay S M, Ramos V A, Marquez M. Evidence in Cerro Pampavolcanic rocks of slab melting prior to ridge trench collision in southern South America[J]. Journal of Geology,1993,101:703-714.
[17] Atherton M P, Petford N. Generation of sodium-rich magmas from newly underplated basaltic crust[J].Nature,1993,362:144-146.
[18] Martin H, Smithies R H, Rapp R, et al. An overview of adakite, tonalite-trondhjemite-granodiorite(TTG), and sanukitoid:relationships and some implications for crustal evolution[J].Lithos,2005,79:1-24.
[19] Smithies R H. The Archaean tonalite-trondhjemite-granodiorite (TTG) series is not an analogue of Cenozoic adakite[J]. Earth and Planetary Science Letters, 2000, 182:115-125.
[20] Condie K C. TTGs and adakites:are they both slab melts?[J]. Lithos, 2005,80:33-44.
[21] Rapp R P, Shimizu N, Norman M D, et al. Reaction between slab-derived melts and peridotite in the mantle wedge:experimental constraints at 3.8 GPa[J]. Chemical Geology,1999,160:335-356.
[22] Yumul G P, Dimalanta C B, Bellon H, et al. Adakitic lavas in the central Luzon back-arc region, Philippines:lower crustal partial melting products?[J] Island Arc, 2000, 9:499-512.
[23] Garrison J M, Davidson J P. Dubious case for slab melting in the northern volcanic zone of the Andes[J].Geology, 2003,31:565-568.
[24] Prouteau G, Scaillet B, Pichavant M, et al. Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust[J]. Nature,2001,410:197-200.
[25] Defant M J, Drummond M S. Derivation of some modern arc magmas by the melting of young subducted lithosphere[J].Nature, 1990, 347:6625.
[26] Defant M J, Drummond M S. Mount St Helens:potential example of the partial melting of the subducted lithosphere in a volcanic arc[J].Geology,1993,21:547-550.
[27] Kay R W, Kay S M. Andean adakites:three ways to make them[J]. Acta Petrologica Sinica,2002,18:303-311.
[28] Peacock S M, Rusher T, Thompson A B. Partial melting of subducting oceanic crust[J]. Earth and Planetary Science Letters, 1994, 121:224-227.
[29] Drummond M S, Defant M J. A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting:Archaean to modern comparisons[J].Journal of Geophysical Research Atmospheres,1990,95:21503-21521.
[30] Takahashi Y, Kagashima S I, Mikoshiba M U. Geochemistry of adakitic quartz diorite in the Yamizo mountains, central Japan:implications for Early Cretaceous adakitic magmatism in the inner zone of southwest Japan[J].Island Arc, 2005, 14:150-164.
[31] Prouteau G, Scaillet B. Experimental constraints on the origin of the 1991 Pinatubo dacite[J]. Journal of Petroleum Science and Engineering, 2003,44:2203-2241.
[32] Chung S L, Liu D Y, Ji J Q, et al. Adakites from continental collision zones:melting of thickened lower crust beneath southern Tibet[J].Geology, 2003, 31:1021-1024.
[33] Xu W L, Wang Q H, Wang D Y, et al. Mesozoic adakitic rocks from the Xuzhou-Suzhou area, eastern China:evidence for partial melting of delaminated lower continental crust[J].Journal of Asian Earth Science,2006,27(4):454-464.
[34] Garrison J M, Davidson J P. Dubious case for slab melting in the northern volcanic zone of the Andes[J].Geology,2003,31:565-568.
[35] Smith D R, Leeman W P. Petrogenesis of Mount St. Helensdacitic magmas[J]. Journal of Geophysical Research Soid,1987,92:10313-10334.
[36] Wareham C D, Millar I L, Vaughan A P M. The generation of sodic granitic magmas, western Palmer Land, Antarctic Peninsula[J].Contributions Mineralogy Petrology,1997,128:81-96.
[37] Rapp R P, Shimizu N, Norman M D. Growth of early continental crust by partial melting of eclogite[J]. Nature,2003,425:605-609.
[38] Stevenson J A, Daczko N R, Clarke G L, et al. Direct observation of adakite melts generated in the lower continental crust, Fiordland, New Zealand[J]. Terra Nova, 2005, 17:73-79.
[39] Wu H, Xie C M, Li C, et al. Tectonic shortening and crustal thickening in subduction zones:evidence from Middle-Late Jurassic magmatism in southern Qiangtang, China[J]. Gondwana Research,2016,39:1-13.
[40] Kay R W. Aleutian magnesian andesites:melts from subducted Pacific ocean crust[J]. Journal of Volcanology and Geothermal Research, 1978,4(1/2):117-132.
[41] Wang Q, Wyman D A, Xu J F, et al.Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area,Anhui Province (eastern China):implications for geodynamics and Cu-Au mineralization[J].Lithos,2006,89:424-446.
[42] Rapp R P, Watson E B. Dehydration melting of metabasalt at 8~32 kbar, implications for continental growth and crust-mantle recycling[J]. Journal of Petrology, 1995, 36(4):891-931.
[43] Rapp R P, Shimizu N, Norman M D, et al. Reaction between slab-derived melts and peridotite in the mantle wedge:experimental constraints at 3.8 GPa[J]. Chemical Geology, 1999, 160(4):335-336.
[44] ������,������,����,��.������̫�Ŵ�����Ƭ���ҵ���ʯ����ѧ�����ͳ���ָʾ[J].��ʯѧ��,2013,29(7):2295-2312. SHAN Hou-xiang, ZHAI Ming-guo, WANG Fang, et al. Geochemical characteristics and petrogenesis of the two types of Neoarchean gneisses from the Jiaobei terrane[J]. Acta Petrologica Sinica,2013,29(7):2295-2312.
[45] Huang X L, Xu Y G, Lan J.B, et al.Neoproterozoic adakitic rocks from Mopanshan in the western Yangtze Craton:partial melts of a thickened lower crust[J].Lithos,2009,112(3):367-381
[46] ����,����,Ǯ��,��.�й�������ɽ�ڰ�����ҵ��������乹��-�ɿ�����[J].��ʯѧ��,2001,17(2):236-244. ZHANG Qi, WANG Yan, QIAN Qing, et al. The characteristics and tectonic-metallogenic significances of the adakites in Yanshan period from eastern China.[J]. Acta Petrologica Sinica, 2001,17(2):236-244
[47] �����,��ľ�Ͳ� K,�⸣Ԫ,��.����ʡ�ϲ��Ĺ�ɽ����������������CHIME����[J].����ѧ,2005,34(4):305-314. SUN De-you, SUZUKI K,WU Fu-yuan, et al. CHIME dating and its application for Mesozoic granites of Huanggoushan, Jilin Province[J]. Geochimica,2005,34(4):305-314.
[48] ����,��һ��,���׳�,��.�����ϲ��Ĺ�ɽ����٪�޼ͻ����ҵ���ѧ��������������[J].�ɶ�����ѧѧ��(��Ȼ��ѧ��),2013,40(1):97-105. QING Ya, LIANG Yi-hong, HU Zhao-chu,et al. Geochemical characteristics and tectonic significance of Jurassic granites in Huanggoushan area, South of Jilin, China[J]. Journal of Chengdu University of Technology(Science and Technology Edition),2013,40(1):97-105
[49] ����,�����,��,��.�����ٽ�ӭ�Ų�ͭ(��)�󻨸������������ѧ�͵���ѧ����[J].�������,2016,35(2):336-347. WANG Hao,LI Bi-le,Peng Bo,et al. Chronology and geochemistry for granodiorite porphyry from Yingmencha Cu-Mo deposit in Linjiang of Jilin[J].Global Geology,2016,35(2):336-347.
[50] �Ž���. ����ʡ��ɽ�а����ӽ�󴲵��ʡ�����ѧ�����������о�:˶ʿѧλ����[D].����:���ִ�ѧ,2015. ZHANG Jian-ze. Study on genesis and geological and geochemical characteristics of Banmiaozi gold deposit in Baishan city, Jilin Province:master's degree thesis[D].Changchun:Jilin University,2015.
[51] �⸣Ԫ,�����,��С��.�ɶ��뵺�������������ҽ����õ����ѧ���[J].��У����ѧ��,2005, 11(3):305-317. WU Fu-yuan, YANG Jin-hui, LIU Xiao-ming. Geochronological framework of the Mesozoic granitic magmatism in the Liaodong Peninsula, Northeast China[J]. Geological Journal of China Universities,2005, 11(3):305-317.
[52] Zhou J B, Wilde S A, Zhang X Z, et al. The onset of Pacific margin accretion in NE China:evidence from the Heilongjiang high-pressure metamorphic belt[J]. Tectonophysics, 2009, 478:230-246.
[53] Zhou J B, Cao J L, Wilde S A, et al. Paleo-Pacific subduction-accretion:evidence from geochemical and U-Pb zircon dating of the Nadanhada accretionary complex, NE China[J]. Tectonics, 2014, 33:2444-2466.
[54] Ma X H, Zhu W P, Zhou Z H, et al. Transformation from Paleo-Asian Ocean closure to Paleo-Pacific subduction:new constraints from granitoids in the eastern Jilin-Heilongjiang belt, NE China[J]. Journal of Asian Earth Sciences, 2017, 144(15):261-286.
[55] Wilde S A. Final amalgamation of the Central Asian Orogenic Belt in NE China:Paleo-Asian Ocean closure versus Paleo-Pacific Plate subduction:a review of the evidence[J]. Tectonophysics, 2015, 662:345-362.
[56] Yang D G, Sun D Y, Gou J, et al. U-Pb ages of zircons from Mesozoic intrusive rocks in the Yanbian area, Jilin Province, NE China:transition of the Paleo-Asian oceanic regime to the circum-Pacific tectonic regime[J]. Journal of Asian Earth Sciences, 2017, 143(1):171-190.
[57] ����,��ɶ�,������,��.���ڸ�����ɽ�������������̫ƽ������ת��:ʱ���־��ȫ�������ϵ[J]. ��������Դ, 2012, 21(3):261-265. PENG Yu-jing, QI Cheng-dong, ZHOU Xiao-dong, et al. Transition from Paleo-Asian ocean domain to circim-pacific ocean domain for the Ji-Hei composite orogenic belt:time mark and relationship to global tectonics[J]. Geology and Resources,2012, 21(3):261-265.
[58] Yu J J, Wang F, Xu W L, et al. Early Jurassic mafic magmatism in the Lesser Xing'an-Zhangguangcai Range, NE China, and its tectonic implications:constraints from zircon U-Pb chronology and geochemistry[J]. Lithos, 2012, (142/143):256-266.
[59] ����ƽ. �����ǵ�����٪��-���Ѽ͹����������ص�[J]. ���ִ�ѧѧ��(�����ѧ��), 2011,41(5):1267-1284. ZHANG Yun-ping. Main characteristics of Late Jurassic-Cretaceous tectonic framework in Northeast Asia[J]. Journal of Jilin University(Earth Science Edition), 2011,41(5):1267-1284.
[60] �����.������鱱Ե���ο�ԭ-�Ӽ�����������-��٪���������ݻ�:��ʿѧλ����[D].����:���ִ�ѧ,2018. GUAN Qing-bin. Permian-Early Jurassic tectonic evolution of Kaiyuan-Yanji area in the eastern segment of the northern margin of the North China Block:doctor's degree thesis[D]. Changchun:Jilin University,2018.
�������������
1�����, ��ɭ, ����ΰ, ������, ʯ��, �ŵ�, ����, ����ʵ.�������������󴲳ɿ��������ѧ���������������[J]. �������, 2019,38(1): 130-139,153
2������, Ǯ��, �����, �����, ����, �Ž�ƽ.������Ⱥ��������������A�ͻ����ҵ����ѧ������ѧ�͹�������[J]. �������, 2019,38(1): 34-45
3������, ������, ������, ������, ���ӻ�.���ɹ����׵������ڰ�����ʯ���򼰹��챳��[J]. �������, 2019,38(1): 46-57
4�����, ����Ӣ, ��ʿ��, ֣����.���˰��뱱�μ�Դ���������������������ʯU����Pb���估����ѧ����[J]. �������, 2019,38(1): 108-118
5��������, ����ʤ, �Ż�, ղ����, ����.�����в������ӹ������������ʯU����Pb���估��ʯ����ѧ����[J]. �������, 2019,38(1): 68-79
6�����, ����ʤ, ������.�����в����𻨸��������ʯU-Pb���ѧ����ʯ����ѧ�о�[J]. �������, 2019,38(1): 94-107
7���ž�ͨ, ����ǧ, ս�˳�, ���ʤ.����������������ʯ̿ͳ�Ƽ��������ʷ�ɰ�ҵĵ���ѧ����[J]. �������, 2019,38(1): 119-129
8���Ŷ�, ������, ��ΰ��, ��Ȫ��, �����.��ľ˹�ؿ鼰�����������-�������������ݻ�[J]. �������, 2018,37(4): 1149-1166
9����˧, ��Ρ, ����ǿ.������ʡ������ض��������°���ͳ������Ż����ָ�[J]. �������, 2018,37(4): 1309-1316
10��ۡ��, �ֺ���, �ں��, ������.���ֶ�����(��)-��(ɽ)���Ѵ��ڼ��Դ�����ͬλ�����ѧ����ʯ��ѧ����������[J]. �������, 2018,37(4): 1047-1057,1084
11������ΰ, ���ʤ, �೬, ����, ������, ����ѩ, ������, ս�˳�.�ɶ�������ʯӢ�������ʯU-Pb���ѧ����ʯ����ѧ�������[J]. �������, 2018,37(4): 1033-1046
12��֣����, ����Ӣ, ���, ��ʿ��.����ѧ�쳣ʶ������ֻ���ѧϰ�㷨֮�Ƚ�[J]. �������, 2018,37(4): 1288-1294
13���﴾��, �൤, ������, ���IJ�.�����в��������ؽ���Ԫ����̬����ѧ����[J]. �������, 2018,37(4): 1301-1308
14���Ե�, ����, ���, ��Խ, ����, ���庣, �»��.���˰��뱱�β���ͼ������ʯ̿�������ҵij��������ʯU-Pb���䡢����ѧ��Lu-Hfͬλ��֤��[J]. �������, 2018,37(3): 712-723
15��������, ���ʤ, ��Ŵ�, ţ��ƽ, ����, ����ά, ����.���ɹźɶ�����Ǧп���������������ҳ����ʯU-Pb���ѧ����ʯ����ѧ��Լ[J]. �������, 2018,37(3): 737-746,760

Copyright by �������