[an error occurred while processing this directive] ������� 2018, 37(2) 458-465,476 DOI:   10.3969/j.issn.1004-5589.2018.02.012  ISSN: 1004-5589 CN: 22-1111/P

����Ŀ¼ | ����Ŀ¼ | ������� | �߼�����                                                            [��ӡ��ҳ]   [�ر�]
��������
��չ����
������Ϣ
Supporting info
PDF(3102KB)
[HTMLȫ��]
�����[PDF]
�����
�����뷴��
�ѱ����Ƽ�������
�����ҵ����
�������ù�����
����
Email Alert
���·���
���������Ϣ
���Ĺؼ����������
���﹵���
��ɽ�����ҳɿ�����
�ɷ�����
���ҳɿ�����
���������������
��Ŵ�
�����
������
������
����
������
������
PubMed
Article by Sun J
Article by Sun F
Article by Ren L
Article by Jin R
Article by He X
Article by Li X
Article by Liu C
�����ٽ�������ɽ���������к���ĸ�ɷ�����������ҳɿ�����
��Ŵ�1, �����1, ������2, ������1, ����1, ������2, ������1
1. ���ִ�ѧ �����ѧѧԺ, ���� 130061;
2. ����ʡ������������о�Ժ, ���� 130012
ժҪ�� ��ɽ������Ϊ���﹵���ɿ����塣�������õ���̽��Բ�ɽ���������к���ĸ��ѧ�ɷֽ����о����Դ���̽���ҽ����򼰳ɿ�DZ�����о�������ɽ�������еĺ���ĸΪ�ҽ������þ�ʺ���ĸ�����и�Al��K��Mg��Ti����Na��Ca����������22����ԭ��Ϊ���������˺���ĸ��������������ز�������ȫ����TAl����þ���ʣ�Mg#���ϸߡ����ú���ĸ��ѧ�ɷֶ�����̽���¶ȡ�ѹ������λ��ȼ����ݶȽ����˹��㡣��ʯ�̽�ʱ���¶�Ϊ750��~780�棬�̽�ѹ����ΧΪ131.77~143.89 MPa����λ���Ϊ5.0��5.4 km�����ݶ�f��O2��=10-13��10-14���ɴ˵ó���Ϊ�е���ȡ����¡������ݶ����塣����ĸ��ѧ�ɷ�������ʾ��ʯΪI�ͻ����ң��ҽ�����̫ƽ�����򻪱���鸩�塢�ؿǼӺ�ı����£��ɿǡ�����ʻ��۶��γɡ���ɽ�����ҹ̽�ʱ�¶ȡ����ݶȽϸߣ�������Au�����ҽ��ں�ɿ������У��������﹵���DZ���ϴ�
�ؼ����� ���﹵���   ��ɽ�����ҳɿ�����   �ɷ�����   ���ҳɿ�����  
Compositional characteristics and petrogenetic and metallogenic significance of biotites from Caoshan granite rock mass in Linjiang area,Jilin Province
SUN Jiu-da1, SUN Feng-yue1, REN Li-ming2, JIN Rui-xiang1, HE Xin1, LI Xiao-peng2, LIU Cheng-xian1
1. College of Earth Sciences, Jilin University, Changchun 130061, China;
2. Institute of Geophysical Exploration of Jilin Province, Changchun 130012, China
Abstract: Caoshan granite is the ore-forming rock mass of Baligou gold deposit. The authors studied the chemical composition of Caoshan biotites in the rock mass by electron microprobe, to understand the magma genesis and metallogenic potential. Results show that biotites from the Caoshan granite mass are magmatic magnesian biotites with high contents of Al, K, Mg and Ti,but low contents of Na and Ca. Based on 22 oxygen atoms, the number of cation and relevant parameters of the biotites are calculated, demonstrating high total aluminum (TAl) and magnesian rate (Mg#). The temperature, pressure, emplacement depth and oxygen fugacity of rock mass consolidation are estimated according to the chemical composition of biotites. Solidification temperature of rock is 750��~780��, solidification pressure is 131.77~143.89 MPa, depth of emplacement is 5.0~5.4 km, and oxygen fugacity f(O2) is 10-13~10-14, indicating that the rock mass formed under medium depth, high temperature, and high oxygen fugacity. The chemical characteristics of biotites indicate that the rock is a type I granite. The magma is formed by the fusion of the crust and mantle material under the background that the Pacific Plate subducted toward the North China Plate and the crust was thickened. The high solidification temperature and oxygen fugacity of Caoshan granite are favorable for the Au element to get into post-magmatic ore-forming fluid, indicating good mineralization potential in the Baligou gold deposit.
Keywords: Baligou gold deposit   Caoshan granite metallogenic rock mass   composition characteristics   petrogenetic and metallogenic significance  
�ո����� 2018-03-07 �޻����� 2018-05-17 ����淢������  
DOI: 10.3969/j.issn.1004-5589.2018.02.012
������Ŀ:

����ʡ���ʿ��������Ŀ��22201300111������.

ͨѶ����: �����(1963-),��,����,��ʿ����ʦ,��Ҫ������Һ�󴲳ɿ�������Ԥ�⡢����ɿ����õȷ�����о�.E-mail:sfy@jlu.edu.cn
���߼��:
����Email: sfy@jlu.edu.cn

�ο����ף�
[1] ���,������,�����.��������ɿ���Ĺ�ɽ�������ӽ�󴲵������������[J].�������,2010,29(3):392-399. LI Bao-yi,YANG Zhen-yu,WANG Yu-fen. Geological characteristics and genesis of Huanggoushan and Banmiaozi gold deposits in Laoling metallogenic belt of southern Jilin[J]. Global Geology,2010,29(3):392-399.
[2] �����,������,Ϳ���,��. �ұ������Һ���ĸ���ﻯѧ�о�����Գɿ������ָʾ[J].������ʯ,2007,27(3):49-54. LI Hong-li, BI Xian-wu, TU Guang-chi,et al.Mineral chemistry of biotite from Yanbei pluton:implication for Sn-metallogeny[J]. Journal of Mineralogy and Petrology,2007,27(3):49-54.
[3] Wones D R,Eugster H P. Stability of biotite:experiment,theory,and application[J].American Mineralogist,1965,50(9):1228-1272.
[4] Kesler S E,Issgonis M J,Brownlow A H, et al.Geochemistry of biotites from mineralized and barren intrusive systems[J].Economic Geology,1975,70(3):559-567.
[5] AbdelRahman A M.Nature of biotites from alkaline,calc-alkaline, and peralumious magmas[J].Journal of Petrology,1994,35(2):525-541.
[6] �»۾�,����ͥ,�ܻ���,��.�������������������к���ĸ�ɷ�����������ҳɿ�����[J].����ѧ��,2015,35(2):267-275. CHEN Hui-jun, ZHANG Shou-ting, CAO Hua-wen,et al.Compositional characteristics, petrogenesis and metallogenic significance of biotite from granite in the Guyong region of western Yunnan Province, China[J]. Acta Mineralogica Sinica,2015,35(2):267-275.
[7] ������,������,������.���ϵ������ҡ�����Һ���ͽ������󴲳ɿ�ģʽ[J]. �����뿱̽,2002,38(2):28-32. LIU Hong-wen, XING Shu-wen, ZHOU Yong-chang. The metallogenic model of the porphyry-hydrothermal gold-multiple metallogenic deposits in South Jilin Province[J].Geology and Prospecting,2002,38(2):28-32.
[8] ��ʫԪ,�����,���,��.��������ɿ������ۺ���Ϣ�ҿ�ģ��[J].���ִ�ѧѧ��(�����ѧ��),2008,38(2):211-216. WANG Shi-yuan, FAN Ji-zhang,WANG Miao,et al. The ore-prospecting model of gold deposits in the Laoling metallegenic belt[J].Journal of Jilin University(Earth Science Edition),2008,38(2):211-216.
[9] ����ε, ������. �ɵ���̽��������ݹ������ʯ������ĸ�е�Fe3+��Fe2+[J]. ��������ѧԺѧ��,1994,24(2):155-162. LIN Wen-wei, PENG Li-jun. The estimation of Fe3+ and Fe2+ contents in amphibole and biotite from EMPA Data[J].Journal of Changchun University of Earth Sciences, 1994,24(2):155-162.
[10] Stone D. Temperature and pressure variations in suites of Archean felsic plutonic rocks, Berens River area, northwest Superior Province,Ontario, Canada[J]. Canadian Mineralogist,2000, 38(2):455-470.
[11] ���ǰ,������,���ٻ�,��.���������ҽ�����ѧ:���۷���������������������[M].�人:�й����ʴ�ѧ������,1994:210-212. MA Chang-qian,YANG Kun-guang,TANG Zhong-hua,et al.Magma-dynamics granitoids:theory,methods and a case study of the eastern Hubei granitoids[M].Wuhan:China University of Geosciences Press,1994:210-212.
[12] Foster M D.Interpretation of the composition of trioctahedral micas[J].US Geological Surey Professional Paper,1960,354B:11-49.
[13] Uchdia E, Endo S,Mitsutoshi M. Relationship between solidification depth of granitic rocks and formation of hydrothermal ore deposits[J]. Resource Geology,2007,57(1):47-56.
[14] ����,����ϼ,������,��.�������������������к���ĸ�ͽ���ʯ�ɷ����������ҳɿ�����[J].��ʯѧ��,2017,33(10):3123-3136. YANG Yang,WANG Xiao-xia,YU Xiao-wei,et al. Chemical composition of biotite and amphibole from Mesozoic granites in northwestern Jiaodong Peninsula,China,and their implications[J].Acta Petrologica Sinica,2017,33(10):3123-3136.
[15] Ayer J A. The mafic minerals of the Falcon Island ultrapotassic pluton, Lake of the Woods, Ontario:progressive reduction during fractionation[J]. Canadian Mineralogist,1998,36(1):49-66.
[16] Henry D J, Guidotti C V,Thomson J A. The Ti-saturation surface for low-to-medium pressure metapelitic biotites:implications for geothermometry and Ti-substitution mechanisms[J]. American Mineralogist,2005,90(2/3):316-328.
[17] Buddington A F, Lindsley D H.Iron-titanium oxide minerals and synthetic equivalents[J].Journal of Petrology,1964:5(2):310-357.
[18] Albuquerque,Carlos C A R D.Geochemistry of biotites from granitic rocks,northern Portugal[J].Geochimica Et Cosmochimica Acta,1973,37(7):1779-1802.
[19] Abdelrahman A M. Nature of biotites from alkaline,calc-alkaline,and peraluminous magmas[J].Journal of Petrology,1994,35(2):1025-1029.
[20] ��Тʯ.�������ϲ�������������ĸ����������������������[C]//�й����ʿ�ѧԺ�󴲵����о����ļ�, 1988:33-50. DING Xiao-shi.Study of typomorphic characteristics of micas from grantioids in Central-Southern Xizang and their geological significance[C]//Bulletin of the Institute of Mineral Depostis Chinese Academy of Geological Sciences, 1988:33-50.
[21] ���Ľ�,������,������,��.����������ͬ����ϵ�л����ҵ���ĸ��������[J].����ѧ��,1986,6(4):298-307. YANG Wen-jin, WANG Lian-kui,ZHANG Shao-li,et al.Micas of the two series of granites in South China[J]. Acta Mineralogica Sinica, 1986,6(4):298-307.
[22] ������. ������ɽ���������̽��[J]. ��ʯѧ��,1986,2(1):61-72. ZHOU Zuo-xia.The origin of intrusive mass in Fengshandong, Hubei Province[J]. Acta Petrologica Sinica,1986,2(1):61-72.
[23] �¹�Զ,�����,�ܫ���,��.���������뻨�������ҳ������ѧ����[M].�人:�й����ʴ�ѧ������,1993:1-131. CHEN Guang-yuan,SUN Dai-sheng,ZHOU Xun-ruo,et al. Genetic mineralogy and gold mineralization of Guojialing granodiorite in Jiaodong region[M]. Wuhan:China University of Geosciences Press,1993:1-131.
[24] �����. ���ϻ����ҵĺ���ĸ�Ϳ����༰�����ϵ�еĹ�ϵ[J]. ����ѧ��,1982,5(2):149-164. HONG Da-wei.Biotites and mineralogical facies from granitic rocks of South China and their relation to the series of mineralization[J].Acta Geologica Sinica, 1982,5(2):149-164.
[25] Gong Q,Deng J,Wang C,et al. Element behaviors due to rock weathering and its implication to geochemical anomaly recognition:a case study on Linglong biotite granite in Jiaodong Peninsula, China[J]. Journal of Geochemical Exploration,2013,128:14-24.
[26] Wang R C,Xie L,Chen J,et al. Tin-carrier minerals in metaluminous granites of the western Nanling Range(southern China):constraints on processes of tin mineralization in oxidized granites[J]. Journal of Asian Earth Sciences,2013,74(18):361-372.
[27] Li D,Zhang S T,Yan C H,et al. Late Mesozoic time constraints on tectonic changes of the Luanchuan Mo belt,East Qinling orogen,central China[J].Journal of Geodynamics,2012,61(5):94-104.
�������������
1��������, ���ʤ, ¬��, ��Զܰ, ������, ����, ����.�ຣ�����ӵ��������ָ��ն����������к���ĸ��ѧ�ɷ���������������[J]. �������, 2017,36(3): 777-784

Copyright by �������