[an error occurred while processing this directive] ������� 2018, 37(2) 436-446 DOI:   10.3969/j.issn.1004-5589.2018.02.010  ISSN: 1004-5589 CN: 22-1111/P

����Ŀ¼ | ����Ŀ¼ | ������� | �߼�����                                                            [��ӡ��ҳ]   [�ر�]
��������
��չ����
������Ϣ
Supporting info
PDF(3556KB)
[HTMLȫ��]
�����[PDF]
�����
�����뷴��
�ѱ����Ƽ�������
�����ҵ����
�������ù�����
����
Email Alert
���·���
���������Ϣ
���Ĺؼ����������
�����ͻ�ɽ�����״�����
�ɿ�����
����ѧ
���������������
���Ʒ�
����
PubMed
Article by Guo Y
Article by An F
�����ͻ�ɽ�����״����󴲵ĵ��ʺ͵���ѧ����
���Ʒ�1,2, ����1,2
1. ������ѧ ����ѧϵ, ���� 710069;
2. ��½����ѧ�����ص�ʵ����, ���� 710069
ժҪ�� �����Ϳ������γ��ڹ�Ԫ�Ŵ������������溣��������ǰ��ع㷺��������ɿ��������������ҵز㣬�����ڻ�ɽ��֮�ϣ��Գɿ��������ʽ����ͽ���Ԫ�ظ�������Ҫ���塣�����Ϳ�״��������̷���ǿ�ҵĻ�����Ӣ�һ��������̽�����΢��������ʯ����̼���λ����󴲳��ʵ������������2~3�����������������ϣ��������ϱ���Ϊ��״�����ҡ���״��ͭ�������ʯ����״������״��ʯ�������ʯ����״�����ҡ������Ϳ󴲵Ļ�ɽ��Χ�Ҷ�Ϊ�Ƽ���ϵ�У���������ϵ�У�����½��Ե�ĵ�����ɽ�Ҿ������Ƶ�΢����ϡ��Ԫ�ص���ѧ�������ɿ������е���Ϊ�Դ��ͺ�ˮ��Ļ����Դ���ɿ�Ԫ����ԴΪ�-�ǻ��Դ��
�ؼ����� �����ͻ�ɽ�����״�����   �ɿ�����   ����ѧ  
Geological and geochemical characteristics of Besshi-type VMS Deposits
GUO Yun-feng1,2, AN Fang1,2
1. Department of Geology, Northwest University, Xi'an 710069, China;
2. State Key Laboratory of Continental Dynamics, Xi'an 710069, China
Abstract: The earliest Besshi-type VMS deposits formed in Paleoproterozoic, and then widely occurred in Phanerozoic oceanic trench or fore-arc basin. The minerogenetic region has thick sedimentary rock formation underlain by the volcanic rocks, which is significant for ore-forming material exchanging and metal elements enriching. The strong beresitization occurred in the footwall of Besshi-type deposits while weak chloritization and carbonation occurred in hanging wall. The deposits consists of single orebody or 2~3 connected orebodies. In profile, from bottom to top it comprises pillow basalts, massive pyrite ore with coper, blocky banded flint pyrite ore, blocky jasper. The volcanic host rocks of Besshi-type VMS deposits are mostly calc-alkaline with a small number of tholeiitic series, and the geochemical characteristics of trace and rare earth elements are similar to the island arc volcanic rocks on the edge of the active continent. The sulfur in metallogenic fluid is from the mixed source of mantle and seawater, and the metallogenic elements are from mixed source of mantle-crust.
Keywords: Besshi-type VMS deposit   metallogenic fluid   geochemistry  
�ո����� 2017-07-10 �޻����� 2018-01-31 ����淢������  
DOI: 10.3969/j.issn.1004-5589.2018.02.010
������Ŀ:

����ʡ�������Ƽ��ƻ���Ŀ��14KJ1761���͹�����Ȼ��ѧ������Ŀ��41403033����������.

ͨѶ����: ����(1984-),������,��Ҫ���¿󴲵���ѧ������о�.E-mail:anfang_china@163.com
���߼��:
����Email: anfang_china@163.com

�ο����ף�
[1] ����֧ާڧ� �� ��. ���ڧ�ڧ٧ѧ�ڧ� ��ѧߧ֧��٧�ۧ�ܧڧ� �ܧ�ݧ�֧էѧߧߧ�� �ާ֧�����اէ֧ߧڧ�[R]. �����ܧӧ�:���� ��������, 1978:5-8. (in Russian)
[2] ��ΰ, ��־��, ֣����,��. �Ŵ����ִ���ɽ�����״������о���չ[J]. �����ѧ��չ, 2003, 18(5):773-782. AN Wei, CAO Zhi-min, ZHENG Jian-bin, et al. The developments of study on ancient and modern volcanogenic massive sulfide deposit[J]. Advances in Earth Science, 2003, 18(5):773-782.
[3] ����֧ާڧ� �� ��. ���ڧ��֧�֧ߧ�ڧѧ�ڧ� �ӧ�ݧܧѧߧ�ԧ֧ߧߧ�ԧ� ���ݧ��ڧէߧ�ԧ� ����է֧ߧ֧ߧڧ� (�ߧ� ���ڧާ֧�� �ܧ�ݧ�֧էѧߧߧ�� �ާ֧�����اէ֧ߧڧ� ��ѧߧ֧��٧��)[��]. �����ܧӧ�:���٧էѧ�֧ݧ���ӧ� �����ܧӧ�, 1983:82-93. (in Russian)
[4] ����֧ާڧ� �� ��, ���֧�ԧѧ�֧� �� ��, ���֧�ԧ֧֧ӧ� �� ��. ���ڧ�� �ܧ�ݧ�֧էѧߧߧ�� �ާ֧�����اէ֧ߧڧ� �ӧ�ݧܧѧߧڧ�֧�ܧ�� �ѧ����ڧѧ�ڧ�[J]. ���֧�ݧ�ԧڧ� ����էߧ�� ���֧�����اէ֧ߧڧ�, 2000, 42(2):177-190. (in Russian)
[5] ����֧ާڧ� �� ��, ���֧�ԧѧ�֧� �� ��, ���֧�ԧ֧֧ӧ� �� ��. ����ݧܧѧߧ�ԧ֧ߧߧڧ� �ܧ�ݧ�֧էѧߧߧ�� �ާ֧�����اէ֧ߧڧ� �� ���ڧ�ݧڧ��ӧ�� �ܧ�ާ�ݧ֧ܧ�ѧ�[C]//���ݧ����-�ҧѧ٧ڧ�ҧѧ٧ڧ��ӧ�� �ܧ�ާ�ݧ֧ܧ�ߧ��-�ݧѧէ�ѧ��� ��6�ݧѧ��֧� �� ��ӧ�٧ѧߧߧ�� �� �ߧڧާ� �ާ֧������ӧէ֧ߧڧ�. ���ܧѧ�֧�ڧߧҧ���:���� ������, 2009:169-173. (in Russian)
[6] Patten C G C, Pitcairn I K, Teagle D A H. Hydrothermal mobilisation of Au and other metals in supra-subduction oceanic crust:insights from the Troodos ophiolite[J]. Ore Geology Reviews, 2017, 86(6):487-508.
[7] ����, ������, �Խ���, ��. ���������ͭ�����������ʯ����ѧ��������������[J]. �����뿱̽, 2016, 52(1):14-24. FU Peng, CHEN Shou-yu, ZHAO Jiang-nan, et al. Geochemical characteristics of rocks from the Baiyinchang copper polymetallic ore field in Gansu Province and geological implications[J]. Geology and Prospecting, 2016, 52(1):14-24.
[8] Nozaki T, Nakamura K, Awaji S, et al. Whole-rock geochemistry of basic schists from the Besshi area, Central Shikoku:implications for the tectonic setting of the Besshi sulfide deposit[J]. Resource Geology, 2010, 56(4):423-432.
[9] Yamamoto M, Kase K, Tsutsumi M. Fractionation of sulfur isotopes and selenium between coexisting sulfide minerals from the Besshi deposit, Central Shikoku, Japan[J]. Mineralium Deposita, 1984, 19(3):237-242.
[10] Sato K, Sasaki A. Lead isotopic feature of the Besshi-type deposits and its bearing on the ore lead evolution[J]. Geochemical Journal, 1980, 14(6):303-315.
[11] Yoshida K, Hirajima T. Annular fluid inclusions from a quartz vein intercalated with metapelites from the Besshi area of the Sanbagawa belt, SW Japan[J]. Journal of Mineralogical & Petrological Sciences, 2012, 107(1):50-55.
[12] ����Ȩ, ��ά��, ������, ��. �½�������ͭ��Ӣ���������䡪����ɽ�ʻ�ɽ�ҵĵ���ѧ�����빹�챳��[J]. �󴲵���, 2010, 29(2):218-228. GAO Zhen-quan, FANG Wei-xuan, HU Rui-zhong, et al. Tectonic setting and geochemical characteristics of dacite andesite-basalt volcanic rocks in Ashele copper deposit, Xinjiang[J]. Mineral Deposits, 2010, 29(2):218-228.
[13] Sharman E R, Taylor B E, Minarik W G, et al. Sulfur isotope and trace element data from ore sulfides in the Noranda district (Abitibi, Canada):implications for volcanogenic massive sulfide deposit genesis[J]. Mineralium Deposita, 2015, 50(5):591-606.
[14] ������, ������, ����, ��. ������͸ɽͭп��Χ�Һ���б���������ʯU-Pb���꼰���״����ָʾ����[J]. ���ִ�ѧѧ��(�����ѧ��), 2013, 43(4):1159-1168. ZHANG Zeng-jie, XING Shu-wen, MA Yu-bo, et al. Zircon U-Pb dating of the biotite-bearing plagioclase amphibolite from Hongtoushan Cu-Zn deposit, Liaoning Province, China and its implications on the exploration of VMS[J]. Journal of Jilin Univcrsity(Earth Scicncc Edition), 2013, 43(4):1159-1168.
[15] ����, ���Գ�, �Ź���, ��. ����������ͭп�󴲵���ѧ����������[J]. �������, 2014, 33(2):337-347. HAO Ming, YANG Yan-chen, ZHANG Guo-bin, et al. Geochemical characteristics and genesis of Shujigou Cu-Zn deposit, Liaoning[J]. Global Geology, 2014, 33(2):337-347.
[16] Yamada R, Yoshida T. Relationships between Kuroko volcanogenic massive sulfide (VMS) deposits, felsic volcanism, and island arc development in the Northeast Honshu arc, Japan[J]. Mineralium Deposita, 2011, 46(5/6):431-448.
[17] ��Ժ, ����, ë����, ��. ���ڹ�������ؽ����Ĵ��ȴ����������ģ��[J]. �󴲵���, 2013, 32(6):1077-1092. DANG Yuan, CHEN Mao-hong, MAO Jing-wen, et al. Deposit model reconstruction of Xiacun siliver polymetallic deposit in Sichuan Province based on tectonic analysis[J]. Mineral Deposit, 2013, 32(6):1077-1092.
[18] ����ǫ,����,������, ��. �ִ���Ŵ�������ˮ�ɿ�����[M]. ����:���ʳ�����, 2003:1-91. HOU Zeng-qian, HAN Fa, XIA Lin-qi, et al. Hydrothermal systems and metallogeny on the mordern and ancient sea-floor[M]. Beijing:Geological Publishing House, 2003:1-91.
[19] ����Ԩ. ��״����󴲵����͡��ֲ����γɻ���[J]. �����ѧ�뻷��ѧ��, 2007, 29(4):331-344. LI Wen-yuan. Classification, distribution and forming setting of massive sulfide deposits[J]. Journal of Earth Sciences and Environment, 2007, 29(4):331-344.
[20] Layton-Matthews D, Peter J M, Scott S D, et al. Distribution, mineralogy, and geochemistry of selenium in felsic volcanic-hosted massive sulfide deposits of the Finlayson Lake District, Yukon Territory, Canada[J]. Economic Geology, 2008, 103(1):61-88.
[21] Wardle R J, Ryan B, Ermanovics I. The eastern Churchill Province, Torngat and New Québec orogens:an overview[J]. Geoscience Canada, 1990,14(4):217-222.
[22] Barrett T J, Wares R P, Fox J S. Two-stage hydrothermal formation of a Lower Proterozoic sediment-hosted massive sulfide deposit, northern Labrador, Quebec[J]. Canadian Mineralogist, 2014, 26(3):871-888.
[23] Beaudoin G. Proterozoic Pb isotope evolution in the Belt-Purcell Basin; constraints from syngenetic and epigenetic sulfide deposits[J]. Economic Geology, 1997, 92(3):343-350.
[24] Bending J S, Scales W G. New production in the Idaho cobalt belt:a unique metallogenic province[J]. Applied Earth Science, 2001, 110(110):81-87.
[25] Gaboury D, Pearson V. Rhyolite geochemical signatures and association with volcanogenic massive sulfide deposits:examples from the Abitibi belt, Canada[J]. Economic Geology, 2008, 103(7):1531-1562.
[26] Miller C. Geological and geochemical aspects of the Liontown VHMS deposit North eastern Queensland[J]. Library Home, 1996, 25(4):47-59.
[27] Peter J M, Scott S D. Windy Craggy, northwestern British Columbia:the world's largest Besshi-type deposit[J].Economic Geology,1999,94(8):261-295.
[28] Lodge R W D, Gibson H L, Stott G M, et al. Geodynamic setting, crustal architecture, and VMS metallogeny of ca. 2.[J]. Canadian Journal of Earth Sciences, 2014, 52(3):196-214.
[29] ���Ǻ�. �½������ջ�ɽ���Ϳ�״����ͭ�󴲳ɿ������ɿ�ģʽ:��ʿѧλ����[D]. ����:�й����ʿ�ѧԺ, 1995. WANG Deng-hong. On the metallogenic mechanism and model of the Ashele volcanogenic massive sulfide copper deposit, Xinjiang:doctor's degree thesis[D]. Beijing:Chinese Academy of Geological Sciences, 1995.
[30] Lobanov K, Yakubchuk A, Creaser R A. Besshi-type VMS deposits of the Rudny Altai (Central Asia)[J]. Economic Geology, 2014, 109(5):1403-1430.
[31] Lobanov K V, Gaskov I V. The Karchiga copper massive sulfide deposit in the high-grade metamorphosed rocks of the Kurchum block:geologic structure, formation, and metamorphism (Rudny Altai)[J]. Russian Geology & Geophysics, 2012, 53(1):77-91.
[32] Kase K, Yamamoto M, ���溣. �ձ��������������Ϳ󴲿�ʯ�Ŀ��P����ѧ����[J]. �����뻷��, 1993(2):4-10. Kase K, Yamamoto M, ZHANG Zu-hai. Mineral and geochemical characteristics of Sanbagawa belt Besshi-type deposit, Japan[J]. Earth and Environment, 1993(2):4-10.
[33] Lehuray A P. Lead and sulfur isotopes and a model for the origin of the Ducktown Deposit, Tennessee[J]. Economic Geology, 1984, 79(7):1561-1573.
[34] ���Ĺ�. �����Ϳ�״����󴲵ĵ����������컷���������ҹ����ҿ�����[J]. ����뿱��, 1990(1):17-23. WANG Wen-guang. The geological characteristics of the tectonic environment of Besshi type massive sulfide deposits in China and its prospecting significance[J]. Mineral Exploration, 1990(1):17-23.
[35] Fox J S. Besshi-type volcanogenic sulfide deposits:a review[J]. Canadian Mining & Metallurgical Bulletin, 1984, 77(1):57-68.
[36] Maghfouri S, Rastad E, Mousivand F. Nudeh deposit, Besshi-type volcanogenic massive sulfide deposit in the Sabzevar back-arc basin[C]//Proceedings of the 33rd National Symposium on Earth Sciences. Tehran:Geological Publishing House, 2012:68-74.
[37] Mousivand F, Rastad E, Meffre S, et al. Age and tectonic setting of the Bavanat Cu-Zn-Ag Besshi-type volcanogenic massive sulfide deposit, southern Iran[J]. Mineralium Deposita, 2012, 47(8):911-931.
[38] Maghfouri S, Rastad E, Mousivand F, et al. Geology, ore facies and sulfur isotopes geochemistry of the Nudeh Besshi-type volcanogenic massive sulfide deposit, southwest Sabzevar Basin, Iran[J]. Journal of Asian Earth Sciences, 2016, 125:1-21.
[39] Ľ��». ����������ɽ��ɽ�ҹ��컷������Ϳ��о�:��ʿѧλ����[D]. ����:�й���ѧԺ��ѧ, 2016. MU Sheng-lu. Volcanic rocks tectonic environments and metallogenesis of typical mineral deposits in Kungai mountains, West Kunlun:doctor's degree thesis[D].Beijing:University of Chinese Academy of Sciences, 2016.
[40] Barber A, Craw D. Lithology, geochemistry, and structure of Moke Creek sulphide deposit host rocks, Otago Schist, New Zealand[J]. New Zealand Journal of Geology & Geophysics, 2002, 45(2):193-205.
[41] Huston D L, Large R R, ���. ��ɽ�����״������н𸻼��Ļ�ѧģʽ[J]. �����뻷��, 1991(1):1-13. Huston D L, Large R R, WANG Nan. Chemical model of gold enrichment in VMS deposits[J]. Earth and Environment, 1991(1):1-13.
[42] Peter J M, Layton M D, Piercey S, et al. Volcanic-hosted massive sulphide deposits of the Finlayson Lake District, Yukon[M]. Special Publication 5, Mineral Deposits Division. Ottawa:Geological Association of Canada, 2007:471-508.
[43] Sebert C. A note on preliminary lithogeochemistry of the Fire Lake area[J]. Yukon Exploration & Geology, 1998, 1(20):195-203.
[44] Nold J L. The Idaho cobalt belt, northwestern United States:a metamorphosed Proterozoic exhalative ore district[J]. Mineralium Deposita, 1990, 25(3):163-168.
[45] Kusakabe M, Mayeda S, Nakamura E. S, O and Sr isotope systematics of active vent materials from the Mariana backarc basin spreading axis at 18°N[J]. Earth & Planetary Science Letters, 1990, 100(1):275-282.
[46] Peter J M, Scott S D. Fluid inclusion and light stable isotope geochemistry of the Windy Craggy Besshi-type massive sulfide deposit, northwestern British Columbia[J]. Journal of Geological Engineering, 1993, 20:229-248.
[47] Sato K, Sasaki A. Lead isotopic feature of the Besshi-type deposits and its bearing on the ore lead evolution.[J]. Geochemical Journal, 1980, 14(6):303-315.
[48] Fox J S, Farquhar R, Rui I, et al. Genesis of basalt-hosted massive sulphide deposits from the Trondheim and Sulitjelma districts, Norway:ore lead isotopic considerations[J]. Mineralium Deposita, 1988, 23(4):276-285.
[49] ��ѧ��, ������, ����,��. ���Ӱӱ�����ͭп�󴲹��컷�����ݻ�[J]. �󴲵���, 2002, 21(����1):453-458. SONG Xue-xin, GUO Yue-min, XU Yu, et al. Tectonic setting and evolutive model of Besshi-typle Cu-Zn deposit at Faziba, SE Gansu, NE China[J]. Mineral Deposits, 2002, 21(Suppl.1):453-458.
�������������
1���Ե�, ����, ���, ��Խ, ����, ���庣, �»��.���˰��뱱�β���ͼ������ʯ̿�������ҵij��������ʯU-Pb���䡢����ѧ��Lu-Hfͬλ��֤��[J]. �������, 2018,37(3): 712-723
2��������, ���ʤ, ��Ŵ�, ţ��ƽ, ����, ����ά, ����.���ɹźɶ�����Ǧп���������������ҳ����ʯU-Pb���ѧ����ʯ����ѧ��Լ[J]. �������, 2018,37(3): 737-746,760
3��������, ������, �����, �ų�, ������, ������.�����ӱߺ�������Ȫˮ�����ɽ���ʯU-Pb���ꡢ����ѧ���������������[J]. �������, 2018,37(3): 675-687
4������Ȼ, ����, ��ʿ�, �����, ������.������˹��ذ���ϵ�������ɰ�ҵ���ѧ����Դ���������Ծ�����������¶ͷΪ��[J]. �������, 2018,37(3): 702-711
5������, ������, ���, ������, �����.�����Ϫ����Ŵ����������ʯ�������ʯѧ������ѧ������������[J]. �������, 2018,37(3): 777-790
6���߸���, �����, ��ۻ�, �����.��Ե����ɽ���ڰ����ʯU-Pb���ѧ������ѧ��Hfͬλ��[J]. �������, 2018,37(3): 747-760
7��������, ��̷�, ���Գ�, ��ְȨ, ������, ����, ֣��.���ɹ�ɳ�����ص�����������ѧ�������ҿ���[J]. �������, 2018,37(3): 826-837
8������, �����, ������, ����, ��־ӱ.����˫�������ϴ�ͭ����������������ʯU-Pb���ѧ����ʯ����ѧ������[J]. �������, 2018,37(2): 399-408
9��������, ����, �żѼ�, �.��³����ѹ���ʴ��������ҵĵ���ѧ��������ʯ����[J]. �������, 2018,37(2): 423-435
10��������, ��Ρ, �ż���, ����ǿ, ������, ��˧.������������������°���ͳ���Ӻ������ʱ�ڹŻ����ָ�[J]. �������, 2018,37(2): 491-499,538
11��֣ȫ��, ������, Ф��, ��ΰ��.���˰��븻��ɽ�����˻��ɿ�Ⱥ����ѧ���ʯU-Pb��������[J]. �������, 2018,37(2): 363-373
12��������, ������, ������, ��, �����.�������������ڻ�ɽ�¼������ѧ����������[J]. �������, 2018,37(2): 466-477
13������Ȼ, �����.����ͷ���Թ�п��ɿ�������������������[J]. �������, 2018,37(1): 124-139
14�����Ķ�, ���, ����, ������, ֣����, ������, κС��.���˰��뱱������ս����������������������ѧ������ѧ����ع�������[J]. �������, 2018,37(1): 21-36
15���ΕD, ��ѧ��, ֣����, �ֲ�, ���׺�, �����.������������٪�޼ͻ�ɽ����ʯѧ��ͬλ�����ѧ�����ѧ����[J]. �������, 2018,37(1): 70-87

Copyright by �������